Contrasting Impacts of the Arctic Oscillation on Surface Air Temperature Anomalies in Southern China between Early and Middle-to-Late Winter

Jinqing Zuo Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Jinqing Zuo in
Current site
Google Scholar
PubMed
Close
,
Hong-Li Ren Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Hong-Li Ren in
Current site
Google Scholar
PubMed
Close
, and
Weijing Li Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Weijing Li in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In the boreal winter, the Arctic Oscillation (AO) evidently acts to influence surface air temperature (SAT) anomalies in China. This study reveals a large intraseasonal variation in the relationship between the winter AO and southern China SAT anomalies. Specifically, a weak in-phase relationship occurs in December, but a significant out-of-phase relationship occurs in January and February. The authors show that the linkage between the AO and southern China SAT anomalies strongly depends on the AO-associated changes in the Middle East jet stream (MEJS) and that such an AO–MEJS relationship is characterized by a significant difference between early and middle-to-late winter. In middle-to-late winter, the Azores center of high pressure anomalies in the positive AO phase usually extends eastward and yields a significantly anomalous upper-level convergence over the Mediterranean Sea, which can excite a Rossby wave train spanning the Arabian Sea and intensify the MEJS. In early winter, however, the Azores center of the AO is apparently shifted westward and is mainly confined to the Atlantic Ocean; in this case, the associated change in the MEJS is relatively weak. Both observational diagnoses and experiments based on a linearized barotropic model suggest that the MEJS is closely linked to the AO only when the latter generates considerable upper-level convergence anomalies over the Mediterranean Sea. Therefore, the different impacts of the AO on the MEJS and the southern China SAT anomalies between early and middle-to-late winter are primarily attributed to the large intraseasonal zonal migrations of the Azores center of the AO.

Denotes Open Access content.

Corresponding author address: Hong-Li Ren, National Climate Center, China Meteorological Administration, 46 Zhongguancun, Haidian District, Beijing 100081, China. E-mail: renhl@cma.gov.cn

Abstract

In the boreal winter, the Arctic Oscillation (AO) evidently acts to influence surface air temperature (SAT) anomalies in China. This study reveals a large intraseasonal variation in the relationship between the winter AO and southern China SAT anomalies. Specifically, a weak in-phase relationship occurs in December, but a significant out-of-phase relationship occurs in January and February. The authors show that the linkage between the AO and southern China SAT anomalies strongly depends on the AO-associated changes in the Middle East jet stream (MEJS) and that such an AO–MEJS relationship is characterized by a significant difference between early and middle-to-late winter. In middle-to-late winter, the Azores center of high pressure anomalies in the positive AO phase usually extends eastward and yields a significantly anomalous upper-level convergence over the Mediterranean Sea, which can excite a Rossby wave train spanning the Arabian Sea and intensify the MEJS. In early winter, however, the Azores center of the AO is apparently shifted westward and is mainly confined to the Atlantic Ocean; in this case, the associated change in the MEJS is relatively weak. Both observational diagnoses and experiments based on a linearized barotropic model suggest that the MEJS is closely linked to the AO only when the latter generates considerable upper-level convergence anomalies over the Mediterranean Sea. Therefore, the different impacts of the AO on the MEJS and the southern China SAT anomalies between early and middle-to-late winter are primarily attributed to the large intraseasonal zonal migrations of the Azores center of the AO.

Denotes Open Access content.

Corresponding author address: Hong-Li Ren, National Climate Center, China Meteorological Administration, 46 Zhongguancun, Haidian District, Beijing 100081, China. E-mail: renhl@cma.gov.cn
Save
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W., and L. H. Kang, 2006: Linkage between the Arctic Oscillation and winter climate over East Asia on the interannual timescale: Roles of quasi-stationary planetary wave (in Chinese). Chin. J. Atmos. Sci., 30, 863870.

    • Search Google Scholar
    • Export Citation
  • Chen, W., S. Yang, and R.-H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, doi:10.1029/2004JD005669.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Glowienka-Hense, R., 1990: The North Atlantic Oscillation in the Atlantic–European SLP. Tellus, 42A, 497507, doi:10.1034/j.1600-0870.1990.t01-3-00001.x.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and C.-H. Ho, 2003: Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, 4066, doi:10.1029/2002JD002193.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 2003: Influence of Arctic Oscillation on winter climate over China. J. Geogr. Sci., 13, 208216, doi:10.1007/BF02837460.

    • Search Google Scholar
    • Export Citation
  • Gong, D., S. Wang, and J. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, doi:10.1029/2000GL012311.

    • Search Google Scholar
    • Export Citation
  • Gong, D., Y. Gao, D. Guo, R. Mao, J. Yang, M. Hu, and M. Gao, 2014: Interannual linkage between Arctic/North Atlantic Oscillation and tropical Indian Ocean precipitation during boreal winter. Climate Dyn., 42, 10071027, doi:10.1007/s00382-013-1681-4.

    • Search Google Scholar
    • Export Citation
  • Hilmer, M., and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic Sea ice export. Geophys. Res. Lett., 27, 989992, doi:10.1029/1999GL010944.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., H.-H. Hsu, H.-H. Chia, and C.-Y. Wu, 2008: Decadal relationship between the North Atlantic Oscillation and cold surge frequency in Taiwan. Geophys. Res. Lett., 35, L24707, doi:10.1029/2008GL034766.

    • Search Google Scholar
    • Export Citation
  • Huang, J., M. Ji, K. Higuchi, and A. Shabbar, 2006: Temporal structures of the North Atlantic Oscillation and its impact on the regional climate variability. Adv. Atmos. Sci., 23, 2332, doi:10.1007/s00376-006-0003-8.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophys. Monogr. Ser., Vol. 134, Amer. Geophys. Union, 1–35, doi:10.1029/134GM01.

  • Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    • Search Google Scholar
    • Export Citation
  • Jung, T., M. Hilmer, E. Ruprecht, S. Kleppek, S. K. Gulev, and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16, 33713382, doi:10.1175/1520-0442(2003)016<3371:COTRES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40–Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nath, D., W. Chen, L. Wang, and Y. Ma, 2014: Planetary wave reflection and its impact on tropospheric cold weather over Asia during January 2008. Adv. Atmos. Sci., 31, 851862, doi:10.1007/s00376-013-3195-8.

    • Search Google Scholar
    • Export Citation
  • NOAA/Climate Prediction Center, 2015a: Daily Arctic Oscillation index since January 1950. NOAA/Climate Prediction Center, accessed July 2014. [Available online at ftp://ftp.cpc.ncep.noaa.gov/cwlinks/.]

  • NOAA/Climate Prediction Center, 2015b: Daily North Atlantic Oscillation index since January 1950. NOAA/Climate Prediction Center, accessed July 2014. [Available online at ftp://ftp.cpc.ncep.noaa.gov/cwlinks/.]

  • Ogi, M., Y. Tachibana, and K. Yamazaki, 2003: Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys. Res. Lett., 30, 1704, doi:10.1029/2003GL017280.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, doi:10.1175/2010JCLI3529.1.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, doi:10.1007/s00382-013-1817-6.

    • Search Google Scholar
    • Export Citation
  • Portis, D. H., J. E. Walsh, M. E. Hamly, and P. J. Lamb, 2001: Seasonality of the North Atlantic Oscillation. J. Climate, 14, 20692078, doi:10.1175/1520-0442(2001)014<2069:SOTNAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., F.-F. Jin, J.-S. Kug, J.-X. Zhao, and J. Park, 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett., 36, L11709, doi:10.1029/2009GL037294.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., F.-F. Jin, J.-S. Kug, and L. Gao, 2011: Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow. Climate Dyn., 36, 23572370, doi:10.1007/s00382-010-0913-0.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., F.-F. Jin, and L. Gao, 2012: Anatomy of synoptic eddy–NAO interaction through eddy-structure decomposition. J. Atmos. Sci., 69, 21712191, doi:10.1175/JAS-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., W.-T. Kwon, H.-J. Baek, K.-O. Boo, G.-H. Lim, and J.-S. Kug, 2006: A possible impact of the North Atlantic Oscillation on the East Asian summer monsoon precipitation. Geophys. Res. Lett., 33, L21713, doi:10.1029/2006GL027253.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2013: Interannual variability of the East Asian winter monsoon and related modulations of the planetary waves. J. Climate, 26, 94459461, doi:10.1175/JCLI-D-12-00842.1.

    • Search Google Scholar
    • Export Citation
  • Tan, G., H. Chen, Z. Sun, and W. Deng, 2010: Linkage of the cold event in January 2008 over China to the North Atlantic Oscillation and stratospheric circulation anomalies (in Chinese). Chin. J. Atmos. Sci., 34, 175183.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms—one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, doi:10.1256/smsqj.56401.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, doi:10.1029/2010GL042659.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, doi:10.1175/JCLI-3228.1.

    • Search Google Scholar
    • Export Citation
  • Wen, M., S. Yang, A. Kumar, and P. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 11111131, doi:10.1175/2008MWR2638.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and R. Huang, 1999: Effect of the extremes in the North Atlantic Oscillation on East Asian winter monsoon (in Chinese). Chin. J. Atmos. Sci., 23, 641651.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian High and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, doi:10.1029/2002GL015373.

    • Search Google Scholar
    • Export Citation
  • Xu, H., J. Li, J. Feng, and J. Mao, 2012: The asymmetric relationship between the winter NAO and the precipitation in Southwest China (in Chinese). Acta Meteor. Sin., 70, 12761291.

    • Search Google Scholar
    • Export Citation
  • Yang, S., K.-M. Lau, S.-H. Yoo, J. L. Kinter, K. Miyakoda, and C.-H. Ho, 2004: Upstream subtropical signals preceding the Asian summer monsoon circulation. J. Climate, 17, 42134229, doi:10.1175/JCLI3192.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., D. Gong, D. Guo, X. He, and Y. Lei, 2008: Anomalous winter temperature and precipitation events in Southern China (in Chinese). Acta Geogr. Sin., 63, 899912.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, H.-L. Ren, and L. Chen, 2012: Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism. Chin. J. Geophys., 55, 2334, doi:10.1002/cjg2.1697.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., W. Li, C. Sun, L. Xu, and H.-L. Ren, 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 11731186, doi:10.1007/s00376-012-2125-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1957 909 193
PDF Downloads 739 126 9