Attribution of the Recent Winter Sea Ice Decline over the Atlantic Sector of the Arctic Ocean

Doo-Sun R. Park Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Doo-Sun R. Park in
Current site
Google Scholar
PubMed
Close
,
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
, and
Steven B. Feldstein Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0042.s1.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, 524 Walker Building, University Park, PA 16802-5013. E-mail: sxl31@psu.edu

Abstract

Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0042.s1.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, 524 Walker Building, University Park, PA 16802-5013. E-mail: sxl31@psu.edu

Supplementary Materials

    • Supplemental Materials (DOCX 1.46 MB)
Save
  • Ballinger, T. J., and S. C. Sheridan, 2014: Associations between circulation pattern frequencies and sea ice minima in the western Arctic. Int. J. Climatol., 34, 13851394, doi:10.1002/joc.3767.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I–SSMIS passive microwave data (updated yearly). NASA DAAC at the National Snow and Ice Data Center. Subset used: December 1979 to February 2012, 60°N to 90°N and 90°W to 90°E, accessed 15 Oct 2013, doi:10.5067/8GQ8LZQVL0VL.

  • Comiso, J. C., 2006: Abrupt decline in the Arctic winter sea ice cover. Geophys. Res. Lett., 33, L18504, doi:10.1029/2006GL027341.

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012: Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett., 7, 034011, doi:10.1088/1748-9326/7/3/034011.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Engström, A., J. Karlsson, and G. Svensson, 2014: The importance of representing mixed-phase clouds for simulating distinctive atmospheric states in the Arctic. J. Climate, 27, 265272, doi:10.1175/JCLI-D-13-00271.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, doi:10.1256/0035900021643683.

    • Search Google Scholar
    • Export Citation
  • Fowler, C., W. Emery, and M. Tschudi, 2013: Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors, version 2. National Snow and Ice Data Center. Subset used: December 1979 to February 2012, 60°N to 90°N and entire longitude, accessed 5 Aug 2014, doi:10.5067/LHAKY495NL2T.

  • Francis, J. A., and E. Hunter, 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511, doi:10.1029/2006EO460001.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi:10.1029/2007GL030995.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., E. Hunter, J. R. Key, and X. Wang, 2005: Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett., 32, L21501, doi:10.1029/2005GL024376.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., 2006: Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? J. Climate, 19, 54225438, doi:10.1175/JCLI3906.1.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 2014: A theory for polar amplification from a general circulation perspective. Asia–Pac. J. Atmos. Sci., 50, 3143, doi:10.1007/s13143-014-0024-7.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, doi:10.1126/science.1225154.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Ging, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, doi:10.1175/2011JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 48794894, doi:10.1175/JCLI3587.1.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schonher, T., and S. E. Nicholson, 1989: The relationship between California rainfall and ENSO events. J. Climate, 2, 12581269, doi:10.1175/1520-0442(1989)002<1258:TRBCRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Search Google Scholar
    • Export Citation
  • Spielhagen, R. F., and Coauthors, 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450453, doi:10.1126/science.1197397.

    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, doi:10.1175/2010JCLI3817.1.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012a: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, doi:10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012b: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045, doi:10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, doi:10.1029/2009GL037820.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, doi:10.1029/2012GL052868.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Feldstein, and S. Lee, 2011: The impact of the Madden-Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1536 647 36
PDF Downloads 1004 273 29