Interdecadal Baroclinic Sea Level Changes in the North Pacific Based on Historical Ocean Hydrographic Observations

Tatsuo Suzuki Department of Integrated Climate Change Projection Research, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Search for other papers by Tatsuo Suzuki in
Current site
Google Scholar
PubMed
Close
and
Masayoshi Ishii Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

Search for other papers by Masayoshi Ishii in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Using historical ocean hydrographic observations, decadal to multidecadal sea level changes from 1951 to 2007 in the North Pacific were investigated focusing on vertical density structures. Hydrographically, the sea level changes could reflect the following: changes in the depth of the main pycnocline, density gradient changes across the pycnocline, and modification of the water mass density structure within the pycnocline. The first two processes are characterized as the first baroclinic mode. The changes in density stratification across the pycnocline are sufficiently small to maintain the vertical profile of the first baroclinic mode in this analysis period. Therefore, the first mode should represent mainly the dynamical response to the wind stress forcing. Meanwhile, changes in the composite of all modes of order greater than 1 (remaining baroclinic mode) can be attributed to water mass modifications above the pycnocline. The first baroclinic mode is associated with 40–60-yr fluctuations in the subtropical gyre and bidecadal fluctuations of the Kuroshio Extension (KE) in response to basin-scale wind stress changes. In addition to this, the remaining baroclinic mode exhibits strong variability around the recirculation region south of the KE and regions downstream of the KE, accompanied by 40–60-yr and bidecadal fluctuations, respectively. These fluctuations follow spinup/spindown of the subtropical gyre and meridional shifts of the KE shown in the first mode, respectively. A lag correlation analysis suggests that interdecadal sea level changes due to water mass density changes are a secondary consequence of changes in basin-scale wind stress forcing related to the ocean circulation changes associated with the first mode.

Corresponding author address: Tatsuo Suzuki, Department of Integrated Climate Change Projection Research, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: tsuzuki@jamstec.go.jp

Abstract

Using historical ocean hydrographic observations, decadal to multidecadal sea level changes from 1951 to 2007 in the North Pacific were investigated focusing on vertical density structures. Hydrographically, the sea level changes could reflect the following: changes in the depth of the main pycnocline, density gradient changes across the pycnocline, and modification of the water mass density structure within the pycnocline. The first two processes are characterized as the first baroclinic mode. The changes in density stratification across the pycnocline are sufficiently small to maintain the vertical profile of the first baroclinic mode in this analysis period. Therefore, the first mode should represent mainly the dynamical response to the wind stress forcing. Meanwhile, changes in the composite of all modes of order greater than 1 (remaining baroclinic mode) can be attributed to water mass modifications above the pycnocline. The first baroclinic mode is associated with 40–60-yr fluctuations in the subtropical gyre and bidecadal fluctuations of the Kuroshio Extension (KE) in response to basin-scale wind stress changes. In addition to this, the remaining baroclinic mode exhibits strong variability around the recirculation region south of the KE and regions downstream of the KE, accompanied by 40–60-yr and bidecadal fluctuations, respectively. These fluctuations follow spinup/spindown of the subtropical gyre and meridional shifts of the KE shown in the first mode, respectively. A lag correlation analysis suggests that interdecadal sea level changes due to water mass density changes are a secondary consequence of changes in basin-scale wind stress forcing related to the ocean circulation changes associated with the first mode.

Corresponding author address: Tatsuo Suzuki, Department of Integrated Climate Change Projection Research, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: tsuzuki@jamstec.go.jp
Save
  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2002: Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107, 8013, doi:10.1029/2001JC000964.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and G. S. E. Lagerloef, 2002: Low-frequency pycnocline depth variability at Ocean Weather Station P in the northeast Pacific. J. Phys. Oceanogr., 32, 32073215, doi:10.1175/1520-0485(2002)032<3207:LFPDVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., G. S. E. Lagerloef, and G. Mitchum, 2005: A regional index of northeast Pacific variability based on satellite altimeter data. Geophys. Res. Lett., 32, L17607, doi:10.1029/2005GL023642.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 1993: Sea level changes under increasing atmospheric CO2 in a transient coupled ocean–atmosphere GCM experiment. J. Climate, 6, 22472262, doi:10.1175/1520-0442(1993)006<2247:SLCUIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. J. Greatbatch, 2012: Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modell., 51, 3772, doi:10.1016/j.ocemod.2012.04.003.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and J. Kamada, 2001: Variability of core layer temperature (CLT) of the North Pacific subtropical mode water. Geophys. Res. Lett., 28, 22292232, doi:10.1029/2000GL011716.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate—Observing and Modeling the Global Ocean, G. Siedler et al., Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386, doi:10.1016/S0074-6142(01)80129-7.

  • Huang, R. X., and J. Pedlosky, 1999: Climate variability inferred from layered model of the ventilated thermocline. J. Phys. Oceanogr., 29, 779790, doi:10.1175/1520-0485(1999)029<0779:CVIFAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and M. Kimoto, 2009: Re-evaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias correction. J. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol., 25, 865879, doi:10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., 1995: Interdecadal variations in the Alaska gyre. J. Phys. Oceanogr., 25, 22422258, doi:10.1175/1520-0485(1995)025<2242:IVITAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lombard, A., A. Cazenave, P. Y. Le Traon, and M. Ishii, 2005: Contribution of thermal expansion to present-day sea level change revisited. Global Planet. Change, 47, 116, doi:10.1016/j.gloplacha.2004.11.016.

    • Search Google Scholar
    • Export Citation
  • Lowe, J. A., and J. M. Gregory, 2006: Understanding projections of sea level rise in a Hadley Centre coupled climate model. J. Geophys. Res., 111, C11014, doi:10.1029/2005JC003421.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855858, doi:10.1029/1999GL900119.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: North Pacific decadal variability in SST and frontal structure simulated in a high-resolution OGCM. J. Climate, 19, 19701989, doi:10.1175/JCLI3793.1.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2008: Interannual-to-decadal variability in the Oyashio and its influence on temperature in the subarctic frontal zone: An eddy-resolving OGCM simulation. J. Climate, 21, 62836303, doi:10.1175/2008JCLI2294.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32, 353375, doi:10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing the Pacific decadal oscillation: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482, doi:10.1175/2459.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the formation of the North Pacific subtropical mode water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36, 13651380, doi:10.1175/JPO2918.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and N. Schneider, 2011: Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr., 41, 979993, doi:10.1175/2010JPO4550.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586605, doi:10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., and M. Ishii, 2011a: Long-term regional sea level changes due to variations in water mass density during the period 1981–2007. Geophys. Res. Lett., 38, L21604, doi:10.1029/2011GL049326.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., and M. Ishii, 2011b: Regional distribution of sea level changes resulting from enhanced greenhouse warming in the Model for Interdisciplinary Research on Climate version 3.2. Geophys. Res. Lett., 38, L02601, doi:10.1029/2010GL045693.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2011: Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM. Climate Dyn., 36, 18131834, doi:10.1007/s00382-010-0749-7.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and Y. Kitamura, 2003: Long-term variability of North Pacific subtropical mode water in response to spin-up of the subtropical gyre. J. Oceanogr., 59, 279290, doi:10.1023/A:1025507725222.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and K. Sakurai, 2006: Interdecadal variability of the sea surface height around Japan. Geophys. Res. Lett., 33, L01605, doi:10.1029/2005GL024920.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 548 336 139
PDF Downloads 166 40 3