Impacts of Intraseasonal SST Anomalies on Precipitation during Indian Summer Monsoon

Jingyuan Xi College of Physical and Environmental Oceanography, Ocean University of China, Qingdao, and State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China

Search for other papers by Jingyuan Xi in
Current site
Google Scholar
PubMed
Close
,
Lei Zhou State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China

Search for other papers by Lei Zhou in
Current site
Google Scholar
PubMed
Close
,
Raghu Murtugudde Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Raghu Murtugudde in
Current site
Google Scholar
PubMed
Close
, and
Lianghong Jiang State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China

Search for other papers by Lianghong Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The forcing and response relation between the ocean and the atmosphere is often a two-way street. Based on the correlation between the surface heat flux and sea surface temperature (SST), it is found that the ocean plays an active role during the Indian summer monsoon (ISM) in two regions: one is the western coast of the Indian peninsula (WCI) and the other is the northern Bay of Bengal (NBB). A focus is made on the impacts of intraseasonal oceanic variabilities on heavy precipitation in these two regions during the ISM. Results show that warm intraseasonal SST anomalies contribute to the instabilities and deep convection in the atmosphere. In WCI, static instability is largely responsible for triggering convection, while in NBB, convection is mainly attributable to baroclinic instability. Despite such regional differences in instability mechanisms, heavy precipitation events during the ISM usually occur within ~3–6 days after the warm SST anomalies are organized. Understanding this process will be helpful to improve the predictive skill of the intraseasonal variabilities during the ISM, which is the lifeline for the countries on the rim of the Indian Ocean, whose food production depends critically on this seasonal phenomenon.

Corresponding author address: Lei Zhou, Room 1107, Research Bldg., No. 36, North Baochu Road, Hangzhou, Zhejiang Province 310012, China. E-mail: lzhou@sio.org.cn

Abstract

The forcing and response relation between the ocean and the atmosphere is often a two-way street. Based on the correlation between the surface heat flux and sea surface temperature (SST), it is found that the ocean plays an active role during the Indian summer monsoon (ISM) in two regions: one is the western coast of the Indian peninsula (WCI) and the other is the northern Bay of Bengal (NBB). A focus is made on the impacts of intraseasonal oceanic variabilities on heavy precipitation in these two regions during the ISM. Results show that warm intraseasonal SST anomalies contribute to the instabilities and deep convection in the atmosphere. In WCI, static instability is largely responsible for triggering convection, while in NBB, convection is mainly attributable to baroclinic instability. Despite such regional differences in instability mechanisms, heavy precipitation events during the ISM usually occur within ~3–6 days after the warm SST anomalies are organized. Understanding this process will be helpful to improve the predictive skill of the intraseasonal variabilities during the ISM, which is the lifeline for the countries on the rim of the Indian Ocean, whose food production depends critically on this seasonal phenomenon.

Corresponding author address: Lei Zhou, Room 1107, Research Bldg., No. 36, North Baochu Road, Hangzhou, Zhejiang Province 310012, China. E-mail: lzhou@sio.org.cn
Save
  • Ananthakrishnan, R., and M. K. Soman, 1988: The onset of the southwest monsoon over Kerala: 1901–1980. J. Climatol., 8, 283296, doi:10.1002/joc.3370080305.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: Effective number of degrees of freedom of a spatial field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992a: Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmos.–Ocean, 30, 142, doi:10.1080/07055900.1992.9649429.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369, doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992c: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, doi:10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., S. P. Xie, J. P. McCreary, Y. Qi, and Y. Du, 2013: Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 816830, doi:10.1002/jgrc.20075.

    • Search Google Scholar
    • Export Citation
  • Clark, C. O., J. E. Cole, and P. J. Webster, 2000: Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability. J. Climate, 13, 25032519, doi:10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, doi:10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, M., and S. Wijffels, 2002: Intraseasonal variability in the South Equatorial Current of the east Indian Ocean. J. Phys. Oceanogr., 32, 265277, doi:10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and T. Li, 2002: Impacts of air–sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon. Wea. Rev., 130, 28892904, doi:10.1175/1520-0493(2002)130<2889:IOASCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, doi:10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2012: South Asian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, 2nd ed., W. K.-M. Lau and D. E. Waliser, Eds., Springer, 21–72.

  • Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2005: ENSO control on the South Asian monsoon through the length of the rainy season. Geophys. Res. Lett., 32, L18717, doi:10.1029/2005GL023216.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., and S. I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, doi:10.1029/1999GL002297.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., R. Murtugudde, R. Ferrari, and P. Malanotte-Rizzoli, 2005: The impact of horizontal resolution on the equatorial mixed layer heat budget in ocean general circulation models. J. Climate, 18, 841851, doi:10.1175/JCLI-3288.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81105, doi:10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, I. S., S. I. An, and F. F. Jin, 2001: A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79, 110, doi:10.2151/jmsj.79.1.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., I. S. Kang, B. Wang, and J. Y. Lee, 2008: Interannual variations of the boreal summer intraseasonal variability predicted by ten atmosphere–ocean coupled models. Climate Dyn., 30, 485496, doi:10.1007/s00382-007-0292-3.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809816, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurian, N., M. Lengaigne, G. V. Vissa, J. Vialard, S. Pous, A.-C. Peter, F. Durand, and S. Naik, 2013: Processes of India’s offshore summer intraseasonal sea surface temperature variability. Ocean Dyn., 63, 329346, doi:10.1007/s10236-013-0604-6.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7, 11841207, doi:10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 2750, doi:10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. J. Climate, 6, 3141, doi:10.1175/1520-0442(1993)006<0031:ACASBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1997: The South Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 19211943, doi:10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, P., S. Taraphdar, B. N. Goswami, and K. Krishnakumar, 2010: Indian summer monsoon precipitation climatology in a high-resolution regional climate model: Impacts of convective parameterization on systematic biases. Wea. Forecasting, 25, 369387, doi:10.1175/2009WAF2222320.1.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., J. Bhate, O. P. Sreejith, and H. R. Hatwar, 2011: Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dyn., 36, 4155, doi:10.1007/s00382-009-0634-4.

    • Search Google Scholar
    • Export Citation
  • Peña, M., E. Kalnay, and M. Cai, 2003: Statistics of locally coupled ocean and atmosphere intraseasonal anomalies in Reanalysis and AMIP data. Nonlinear Processes Geophys., 10, 245251, doi:10.5194/npg-10-245-2003.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., and P. Molnar, 2014: Combining regional moist static energy and ENSO for forecasting of early and late season Indian monsoon rainfall and its extremes. Geophys. Res. Lett., 41, 43234331, doi:10.1002/2014GL060429.

    • Search Google Scholar
    • Export Citation
  • Saha, S. K., S. Halder, A. Suryachandra Rao, and B. N. Goswami, 2012: Modulation of ISOs by land–atmosphere feedback and contribution to the interannual variability of Indian summer monsoon. J. Geophys. Res., 117, D13101, doi:10.1029/2011JD017291.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11, 165188, doi:10.1175/1520-0442(1998)011<0165:AOAIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and B. M. Misra, 1977: Relationships between sea surface temperature and wind speed over the central Arabian Sea and monsoon rainfall over India. Mon. Wea. Rev., 105, 9981002, doi:10.1175/1520-0493(1977)105<0998:RBSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. M. Uppala, D. P. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 2535.

    • Search Google Scholar
    • Export Citation
  • Terray, P., P. Delecluse, L. Terray, and S. Labattu, 2003: Sea surface temperature associations with the late Indian summer monsoon. Climate Dyn., 21, 593618, doi:10.1007/s00382-003-0354-0.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., D. P. Dee, S. Kobayashi, P. Berrisford, and A. J. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 14851493, doi:10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. Jayakumar, C. Gnanaseelan, M. Lengaigne, D. Sengupta, and B. N. Goswami, 2012: Processes of 30–90 days sea surface temperature variability in the northern Indian Ocean during boreal summer. Climate Dyn., 38, 19011916, doi:10.1007/s00382-011-1015-3.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818, doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, and P. V. Joseph, 2009: Objective definition of the Indian summer monsoon onset. J. Climate, 22, 33033316, doi:10.1175/2008JCLI2675.1.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, and K. J. Heywood, 2010: A dynamical ocean feedback mechanism for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 136, 740754, doi:10.1002/qj.604.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104, doi:10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170, doi:10.1007/s00382-005-0003-x.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Regimes of seasonal air–sea interaction and implications for performance of forced simulations. Climate Dyn., 29, 393410, doi:10.1007/s00382-007-0246-9.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, doi:10.1175/JCLI3904.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2007: Annual, seasonal, and interannual variability of air–sea heat fluxes in the Indian Ocean. J. Climate, 20, 31903209, doi:10.1175/JCLI4163.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

  • Zhou, L., and R. Murtugudde, 2010: Influences of Madden–Julian oscillations on the eastern Indian Ocean and the maritime continent. Dyn. Atmos. Oceans, 50, 257274, doi:10.1016/j.dynatmoce.2009.12.003.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and R. Murtugudde, 2014: Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J. Climate, 27, 126139, doi:10.1175/JCLI-D-13-00214.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. Murtugudde, and M. Jochum, 2008a: Seasonal influence of Indonesian Throughflow in the southwestern Indian Ocean. J. Phys. Oceanogr., 38, 15291541, doi:10.1175/2007JPO3851.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. Murtugudde, and M. Jochum, 2008b: Dynamics of the intraseasonal oscillations in the Indian Ocean South Equatorial Current. J. Phys. Oceanogr., 38, 121132, doi:10.1175/2007JPO3730.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., A. H. Sobel, and R. Murtugudde, 2012: Kinetic energy budget for the Madden–Julian oscillation in a multiscale framework. J. Climate, 25, 53865403, doi:10.1175/JCLI-D-11-00339.1.

    • Search Google Scholar
    • Export Citation