Spatial Patterns of Global Precipitation Change and Variability during 1901–2010

Guojun Gu Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Guojun Gu in
Current site
Google Scholar
PubMed
Close
and
Robert F. Adler Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Robert F. Adler in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study examines global precipitation changes/variations during 1901–2010 by using the long-record GPCC land precipitation analysis, the NOAA/Cooperative Institute for Climate and Satellites (CICS) reconstructed (RECONS) precipitation analysis, and the CMIP5 outputs. In particular, spatial features of long-term precipitation changes and trends and decadal/interdecadal precipitation variations are explored by focusing on the effects of various physical mechanisms such as the anthropogenic greenhouse gas (GHG) and aerosol forcings and certain internal oscillations including the Pacific decadal variability (PDV) and Atlantic multidecadal oscillation (AMO).

Precipitation increases in the Northern Hemisphere (NH) mid- to high-latitude lands observed in GPCC can also be found in RECONS and model simulations. Over tropical/subtropical land areas, precipitation reductions generally appear in all products, but with large discrepancies on regional scales. Over ocean, consistent spatial structures of precipitation change also exist between RECONS and models. It is further found that these long-term changes/trends might be due to both anthropogenic GHG and aerosols. The aerosol effect estimated from CMIP5 historical simulations is then removed from the GPCC, RECONS, and AMIP simulations. These isolated GHG-related changes/trends have many similar spatial features when compared to the CMIP5 GHG-only simulations, especially in the zonal-mean context.

Both PDV and AMO have influence on spatial patterns of precipitation variations during the past century. In the NH middle to high latitudes, PDV and AMO have played an important role on interdecadal/multidecadal time scales. In several tropical/subtropical regions, their impacts may even become dominant for certain time spans including the recent past two decades. Therefore, these two internal mechanisms make the estimations of GHG and aerosol effects on precipitation on decadal/interdecadal time scales very challenging, especially on regional scales.

Corresponding author address: Guojun Gu, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Court, Suite 4001, College Park, MD 20740. E-mail: ggu@umd.edu.

Abstract

This study examines global precipitation changes/variations during 1901–2010 by using the long-record GPCC land precipitation analysis, the NOAA/Cooperative Institute for Climate and Satellites (CICS) reconstructed (RECONS) precipitation analysis, and the CMIP5 outputs. In particular, spatial features of long-term precipitation changes and trends and decadal/interdecadal precipitation variations are explored by focusing on the effects of various physical mechanisms such as the anthropogenic greenhouse gas (GHG) and aerosol forcings and certain internal oscillations including the Pacific decadal variability (PDV) and Atlantic multidecadal oscillation (AMO).

Precipitation increases in the Northern Hemisphere (NH) mid- to high-latitude lands observed in GPCC can also be found in RECONS and model simulations. Over tropical/subtropical land areas, precipitation reductions generally appear in all products, but with large discrepancies on regional scales. Over ocean, consistent spatial structures of precipitation change also exist between RECONS and models. It is further found that these long-term changes/trends might be due to both anthropogenic GHG and aerosols. The aerosol effect estimated from CMIP5 historical simulations is then removed from the GPCC, RECONS, and AMIP simulations. These isolated GHG-related changes/trends have many similar spatial features when compared to the CMIP5 GHG-only simulations, especially in the zonal-mean context.

Both PDV and AMO have influence on spatial patterns of precipitation variations during the past century. In the NH middle to high latitudes, PDV and AMO have played an important role on interdecadal/multidecadal time scales. In several tropical/subtropical regions, their impacts may even become dominant for certain time spans including the recent past two decades. Therefore, these two internal mechanisms make the estimations of GHG and aerosol effects on precipitation on decadal/interdecadal time scales very challenging, especially on regional scales.

Corresponding author address: Guojun Gu, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Court, Suite 4001, College Park, MD 20740. E-mail: ggu@umd.edu.
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, J.-J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin, 2008: Relationships between global precipitation and surface temperature on the longer-than-seasonal time scales (1979–2006). J. Geophys. Res., 113, D22104, doi:10.1029/2008JD010536.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., B. J. Soden, V. O. John, W. I. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533–552, doi:10.1007/s10712-012-9213-z.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., and P. M. Forster, 2010: The transient response of global-mean precipitation to increasing carbon dioxide levels. Environ. Res. Lett., 5, 025212, doi:10.1088/1748-9326/5/2/025212.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., T. M. Smith, M. R. P. Sapiano, and J. Janowiak, 2010: The observed sensitivity of the global hydrological cycle to changes in surface temperature. Environ. Res. Lett., 5, 035201, doi:10.1088/1748-9326/5/3/035201.

    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci.,6, 447–451, doi:10.1038/ngeo1799.

  • Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35, L01704, doi:10.1029/2007GL031830.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, doi:10.1126/science.1254937.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263–267, doi:10.1038/ngeo1744.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., and R. F. Adler, 2003: Evolution of El Niño–precipitation relationships from satellites and gauges. J. Geophys. Res., 108 (D4), 4153, doi:10.1029/2002JD002690.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkage between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperature. Geophys. Res. Lett., 33, L08705, doi:10.1029/2006GL025766.

    • Search Google Scholar
    • Export Citation
  • Dong, L., and T. Zhou, 2014a: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols. J. Climate, 27, 33483362, doi:10.1175/JCLI-D-13-00396.1.

    • Search Google Scholar
    • Export Citation
  • Dong, L., and T. Zhou, 2014b: The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos., 119, 11 27211 287, doi:10.1002/2013JD021395.

    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and X. Chen, 2014a: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, 8570–8577, doi:10.1002/2014GL062269.

    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and B. Wu, 2014b: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203217, doi:10.1007/s00382-013-1722-z.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and R. F. Adler, 2013: Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: Global warming and/or Pacific decadal variability? Climate Dyn., 40, 30093022, doi:10.1007/s00382-012-1443-8.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal/longer-time scales derived from the GPCP monthly product. J. Climate, 20, 40334046, doi:10.1175/JCLI4227.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30 99731 022, doi:10.1029/1999JD900835.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2007: Climate simulations for 1880–2003 with GISS modelE. Climate Dyn., 29, 661696, doi:10.1007/s00382-007-0255-8.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keelyside, Y. Okumura, and T. Zhou, 2010: Climate impact of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 10411058, doi:10.1007/s00382-009-0571-2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improvements in the GPCP global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • John, V. O., R. P. Allan, and B. J. Soden, 2009: How robust are observed and simulated precipitation responses to tropical ocean warming? Geophys. Res. Lett.,36, L14702, doi:10.1029/2009GL038276.

  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514, doi:10.1007/s00382-008-0482-7.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and R. P. Allan, 2013: Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett., 8, 034002, doi:10.1088/1748-9326/8/3/034002.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., A. Hu, and Z. Zeng, 2014: On the possible interaction between internal climate variability and forced climate change. Geophys. Res. Lett., 41, 29622970, doi:10.1002/2014GL059908.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, doi:10.1023/A:1015820616384.

  • Marvel, K., and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 301–19 306, doi:10.1073/pnas.1314382110.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., B. Guan, and A. Ruiz-Barradas, 2011: Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713, doi:10.1029/2011GL048650.

    • Search Google Scholar
    • Export Citation
  • Noake, K., D. Polson, G. Hegerl, and X. Zhang, 2012: Changes in seasonal land precipitation during the latter twentieth-century. Geophys. Res. Lett., 39, L03706, doi:10.1029/2011GL050405.

    • Search Google Scholar
    • Export Citation
  • Ren, L., P. Arkin, T. M. Smith, and S. S. P. Shen, 2013: Global precipitation trends in 1900–2005 from a reconstruction and coupled model simulations. J. Geophys. Res. Atmos., 118, 1679–1689, doi:10.1002/jgrd.50212.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., P. A. Arkin, and M. R. P. Sapiano, 2009: Reconstruction of near-global annual precipitation using correlations with sea surface temperature and sea level pressure. J. Geophys. Res., 114, D12107, doi:10.1029/2008JD011580.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., P. A. Arkin, L. Ren, and S. S. P. Shen, 2012: Improved reconstruction of global precipitation since 1900. J. Atmos. Oceanic Technol., 29, 15051517, doi:10.1175/JTECH-D-12-00001.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603, doi:10.1002/2013GL058705.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, doi:10.1175/JCLI4038.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, J. J. Kennedy, and P. D. Jones, 2010: An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 467, 444447, doi:10.1038/nature09394.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future,1, 19–32, doi:10.1002/2013EF000165.

  • Tung, K.-K., and J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110, 20582063, doi:10.1073/pnas.1212471110.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett., 8, 024033, doi:10.1088/1748-9326/8/2/024033.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Contrast of rainfall–SST relationship in the western North Pacific between the ENSO-developing and ENSO-decaying summers. J. Climate, 22, 43984405, doi:10.1175/2009JCLI2648.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Nino decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, P., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nat. Climate Change, 3, 807–810, doi:10.1038/nclimate1932.

    • Search Google Scholar
    • Export Citation
  • Wu, S., Z. Liu, R. Zhang, and T. L. Delworth, 2011: On the observed relationship between the Pacific decadal oscillation and the Atlantic multi-decadal oscillation. J. Oceanogr., 67, 2735, doi:10.1007/s10872-011-0003-x.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612, doi:10.1175/1520-0442-16.10.1601.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2011: An assessment of monsoon precipitation changes during 1901–2001. Climate Dyn., 37, 279296, doi:10.1007/s00382-011-0993-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillation on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465, doi:10.1038/nature06025.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008a: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 38333852, doi:10.1175/2008JCLI2067.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Zhang, and H. Li, 2008b: Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys. Res. Lett., 35, L16707, doi:10.1029/2008GL034881.

    • Search Google Scholar
    • Export Citation