The Leading Mode of Observed and CMIP5 ENSO-Residual Sea Surface Temperatures and Associated Changes in Indo-Pacific Climate

Chris C. Funk Earth Resources Observation Systems Data Center, U.S. Geological Survey, and Climate Hazards Group, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Chris C. Funk in
Current site
Google Scholar
PubMed
Close
and
Andrew Hoell Climate Hazards Group, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Andrew Hoell in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

SSTs in the western Pacific Ocean have tracked closely with CMIP5 simulations despite recent hiatus cooling in the eastern Pacific. This paper quantifies these similarities and associated circulation and precipitation variations using the first global 1900–2012 ENSO-residual empirical orthogonal functions (EOFs) of 35 variables: observed SSTs; 28 CMIP5 SST simulations; Simple Ocean Data Assimilation (SODA) 25-, 70-, and 171-m ocean temperatures and sea surface heights (SSHs); and Twentieth Century Reanalysis, version 2 (20CRv2), surface winds and precipitation.

While estimated independently, these leading EOFs across all variables fit together in a meaningful way, and the authors refer to them jointly as the west Pacific warming mode (WPWM). WPWM SST EOFs correspond closely in space and time. Their spatial patterns form a “western V” extending from the Maritime Continent into the extratropical Pacific. Their temporal principal components (PCs) have increased rapidly since 1990; this increase has been primarily due to radiative forcing and not natural decadal variability.

WPWM circulation changes appear consistent with a Matsuno–Gill-like atmospheric response associated with an ocean–atmosphere dipole structure contrasting increased (decreased) western (eastern) Pacific precipitation, SSHs, and ocean temperatures. These changes have enhanced the Walker circulation and modulated weather on a global scale. An AGCM experiment and the WPWM of global boreal spring precipitation indicate significant drying across parts of East Africa, the Middle East, the southwestern United States, southern South America, and Asia. Changes in the WPWM have tracked closely with precipitation and the increase in drought frequency over the semiarid and water-insecure areas of East Africa, the Middle East, and southwest Asia.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00334.s1.

Corresponding author address: Chris Funk, UCSB Climate Hazards Group, 4716 Ellison Hall, University of Santa Barbara, Santa Barbara, CA 93106. E-mail: chris@geog.ucsb.edu

Abstract

SSTs in the western Pacific Ocean have tracked closely with CMIP5 simulations despite recent hiatus cooling in the eastern Pacific. This paper quantifies these similarities and associated circulation and precipitation variations using the first global 1900–2012 ENSO-residual empirical orthogonal functions (EOFs) of 35 variables: observed SSTs; 28 CMIP5 SST simulations; Simple Ocean Data Assimilation (SODA) 25-, 70-, and 171-m ocean temperatures and sea surface heights (SSHs); and Twentieth Century Reanalysis, version 2 (20CRv2), surface winds and precipitation.

While estimated independently, these leading EOFs across all variables fit together in a meaningful way, and the authors refer to them jointly as the west Pacific warming mode (WPWM). WPWM SST EOFs correspond closely in space and time. Their spatial patterns form a “western V” extending from the Maritime Continent into the extratropical Pacific. Their temporal principal components (PCs) have increased rapidly since 1990; this increase has been primarily due to radiative forcing and not natural decadal variability.

WPWM circulation changes appear consistent with a Matsuno–Gill-like atmospheric response associated with an ocean–atmosphere dipole structure contrasting increased (decreased) western (eastern) Pacific precipitation, SSHs, and ocean temperatures. These changes have enhanced the Walker circulation and modulated weather on a global scale. An AGCM experiment and the WPWM of global boreal spring precipitation indicate significant drying across parts of East Africa, the Middle East, the southwestern United States, southern South America, and Asia. Changes in the WPWM have tracked closely with precipitation and the increase in drought frequency over the semiarid and water-insecure areas of East Africa, the Middle East, and southwest Asia.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00334.s1.

Corresponding author address: Chris Funk, UCSB Climate Hazards Group, 4716 Ellison Hall, University of Santa Barbara, Santa Barbara, CA 93106. E-mail: chris@geog.ucsb.edu

Supplementary Materials

    • Supplemental Materials (DOCX 667.91 KB)
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., and T. Yamagata, 2009: Climate change: The El Niño with a difference. Nature, 461, 481484, doi:10.1038/461481a.

  • Bayr, T., D. Dommenget, T. Martin, and S. Power, 2014: The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., 43, 27472763, doi:10.1007/s00382-014-2091-y.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and B. D. Santer, 2011: Investigating the possibility of a human component in various Pacific decadal oscillation indices. Climate Dyn., 37, 14571468, doi:10.1007/s00382-010-0920-1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, doi:10.1175/JCLI-D-12-00543.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838841, doi:10.1126/science.1065835.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23,19571978, doi:10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific Oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett.,29, doi:10.1029/2001GL014201.

  • Funk, C., 2012: Exceptional warming in the western Pacific–Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa [in “Explaining Extreme Events of 2011 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 93 (7), 10491051.

    • Search Google Scholar
    • Export Citation
  • Funk, C., M. D. Dettinger, J. C. Michaelsen, J. P. Verdin, M. E. Brown, M. Barlow, and A. Hoell, 2008: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA, 105, 11 08111 086, doi:10.1073/pnas.0708196105.

    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2013: Attribution of 2012 and 2003-12 rainfall deficits in eastern Kenya and southern Somalia [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94 (9), S45–S48.

    • Search Google Scholar
    • Export Citation
  • Funk, C., A. Hoell, S. Shukla, I. Bladé, B. Liebmann, J. B. Roberts, and G. Husak, 2014: Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci. Discuss., 11, 31113136, doi:10.5194/hessd-11-3111-2014.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135162, doi:10.1007/BF00210626.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, 21, 27902809, doi:10.1175/2007JCLI2076.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and C. Funk, 2013: The ENSO-related west Pacific sea surface temperature gradient. J. Climate, 26, 95459562, doi:10.1175/JCLI-D-12-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and C. Funk, 2014: Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Climate Dyn., 43, 16451660, doi:10.1007/s00382-013-1991-6.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2014: The regional forcing of Northern Hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Climate Dyn., 42, 32893311, doi:10.1007/s00382-013-1799-4.

    • Search Google Scholar
    • Export Citation
  • Holgate, S. J., and Coauthors, 2013: New data systems and products at the permanent service for mean sea level. J. Coastal Res., 29,493504,doi:10.2112/JCOASTRES-D-12-00175.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2013: Global carbon budget 2013. Earth Syst. Sci. Data Discuss., 6, 689760, doi:10.5194/essdd-6-689-2013.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Search Google Scholar
    • Export Citation
  • Li, G., and B. Ren, 2012: Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001. Theor. Appl. Climatol., 107, 5972, doi:10.1007/s00704-011-0463-3.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2014: Understanding recent Eastern Horn of Africa rainfall variability and change. J. Climate, 27, 86308645, doi:10.1175/JCLI-D-13-00714.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F. C., N. Christidis, and P. A. Stott, 2013: Can the 2011 East African drought be attributed to human-induced climate change? Geophys. Res. Lett., 40, 11771181, doi:10.1002/grl.50235.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., 2014: Seasonal drought in the Greater Horn of Africa and its recent increase during the March–May long rains. J. Climate, 27, 79537975, doi:10.1175/JCLI-D-13-00459.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. G. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, doi:10.1029/2011GL050337.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., A. G. Barnston, and D. G. DeWitt, 2014: Tropical Pacific forcing of a 1998–1999 climate shift: Observational analysis and climate model results for the boreal spring season. Climate Dyn., 43, 893909, doi:10.1007/s00382-013-1891-9.

    • Search Google Scholar
    • Export Citation
  • Mantua, N., and S. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, doi:10.1023/A:1015820616384.

  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Q., M. Latif, W. Park, N. S. Keenlyside, V. A. Semenov, and T. Martin, 2012: Twentieth century Walker circulation change: Data analysis and model experiments. Climate Dyn., 38, 17571773, doi:10.1007/s00382-011-1047-8.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., 2011: A shift in western tropical Pacific sea level trends during the 1990s. J. Climate, 24, 41264138, doi:10.1175/2011JCLI3932.1.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and M. E. Maltrud, 2011: Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett., 38, L21605, doi:10.1029/2011GL049576.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 2004: Year-to-year variability in the Hadley and Walker circulations from NCEP/NCAR reanalysis data. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic, 153–171.

  • Newman, M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 52605269, doi:10.1175/JCLI-D-12-00590.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Quan, X. W., H. F. Diaz, and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Past, Present, and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic, 85–120.

  • Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103117, doi:10.1007/s00382-014-2135-3.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., C. Funk, and A. Hoell, 2014a: Using constructed analogs to improve the skill of March–April–May precipitation forecasts in equatorial East Africa. Environ. Res. Lett., 9, 094009, doi:10.1088/1748-9326/9/9/094009.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., A. McNally, G. Husak, and C. Funk, 2014b: A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrol. Earth Syst. Sci. Discuss., 11, 30493081, doi:10.5194/hessd-11-3049-2014.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific Ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, doi:10.1038/nclimate1591.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., J. E. Smerdon, K. J. Anchukaitis, and R. Seager, 2013: Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature, 493, 389392, doi:10.1038/nature11785.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Vol. 1, Cambridge University Press, 484 pp.

  • Williams, P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 24172435, doi:10.1007/s00382-010-0984-y.

    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2014: The East African long rains in observations and models. J. Climate, 27, 71857202, doi:10.1175/JCLI-D-13-00447.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., A. Rountrey, M. Feng, S.-P. Xie, D. Dissard, K. Rankenburg, J. M. Lough, and M. T. McCulloch, 2014: Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795. Nat. Commun., 5, 19, doi:10.1038/ncomms4607.

    • Search Google Scholar
    • Export Citation