Coupling of South and East Asian Monsoon Precipitation in July–August

Jesse A. Day Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California

Search for other papers by Jesse A. Day in
Current site
Google Scholar
PubMed
Close
,
Inez Fung Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California

Search for other papers by Inez Fung in
Current site
Google Scholar
PubMed
Close
, and
Camille Risi Laboratoire de Météorologie Dynamique, CNRS, Paris, France

Search for other papers by Camille Risi in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The concept of the “Asian monsoon” masks the existence of two separate summer rainfall régimes: convective storms over India, Bangladesh, and Nepal (the South Asian monsoon) and frontal rainfall over China, Japan, and the Korean Peninsula (the East Asian monsoon). In addition, the Himalayas and other orography, including the Arakan Mountains, Ghats, and Yunnan Plateau, create smaller precipitation domains with abrupt boundaries. A mode of continental precipitation variability is identified that spans both South and East Asia during July and August. Point-to-point correlations and EOF analysis with Asian Precipitation–Highly-Resolved Observational Data Integration Toward Evaluation of the Water Resources (APHRODITE), a 57-yr rain gauge record, show that a dipole between the Himalayan foothills (+) and the “monsoon zone” (central India, −) dominates July–August interannual variability in South Asia, and is also associated in East Asia with a tripole between the Yangtze corridor (+) and northern and southern China (−). July–August storm tracks, as shown by lag–lead correlation of rainfall, remain mostly constant between years and do not explain this mode. Instead, it is proposed that interannual change in the strength of moisture transport from the Bay of Bengal to the Yangtze corridor across the northern Yunnan Plateau induces widespread precipitation anomalies. Abundant moisture transport along this route requires both cyclonic monsoon circulation over India and a sufficiently warm Bay of Bengal, which coincide only in July and August. Preliminary results from the LMDZ version 5 (LMDZ5) model, run with a zoomed grid over Asia and circulation nudged toward the ECMWF reanalysis, support this hypothesis. Improved understanding of this coupling may help to project twenty-first-century precipitation changes in East and South Asia, home to over three billion people.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00393.s1.

Corresponding author address: Jesse Day, Department of Earth and Planetary Science, College of Letters and Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720. E-mail: jessed@berkeley.edu

Abstract

The concept of the “Asian monsoon” masks the existence of two separate summer rainfall régimes: convective storms over India, Bangladesh, and Nepal (the South Asian monsoon) and frontal rainfall over China, Japan, and the Korean Peninsula (the East Asian monsoon). In addition, the Himalayas and other orography, including the Arakan Mountains, Ghats, and Yunnan Plateau, create smaller precipitation domains with abrupt boundaries. A mode of continental precipitation variability is identified that spans both South and East Asia during July and August. Point-to-point correlations and EOF analysis with Asian Precipitation–Highly-Resolved Observational Data Integration Toward Evaluation of the Water Resources (APHRODITE), a 57-yr rain gauge record, show that a dipole between the Himalayan foothills (+) and the “monsoon zone” (central India, −) dominates July–August interannual variability in South Asia, and is also associated in East Asia with a tripole between the Yangtze corridor (+) and northern and southern China (−). July–August storm tracks, as shown by lag–lead correlation of rainfall, remain mostly constant between years and do not explain this mode. Instead, it is proposed that interannual change in the strength of moisture transport from the Bay of Bengal to the Yangtze corridor across the northern Yunnan Plateau induces widespread precipitation anomalies. Abundant moisture transport along this route requires both cyclonic monsoon circulation over India and a sufficiently warm Bay of Bengal, which coincide only in July and August. Preliminary results from the LMDZ version 5 (LMDZ5) model, run with a zoomed grid over Asia and circulation nudged toward the ECMWF reanalysis, support this hypothesis. Improved understanding of this coupling may help to project twenty-first-century precipitation changes in East and South Asia, home to over three billion people.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00393.s1.

Corresponding author address: Jesse Day, Department of Earth and Planetary Science, College of Letters and Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720. E-mail: jessed@berkeley.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.44 MB)
Save
  • Aksoy, H., 2000: Use of gamma distribution in hydrological analysis. Turk. J. Eng. Environ. Sci., 24, 419428.

  • Annamalai, H., and J. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Hafner, K. P. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South Asia. J. Climate, 26, 27012718, doi:10.1175/JCLI-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E., and D. Hartmann, 2012: The global distribution of atmospheric eddy length scales. J. Climate, 25, 34093416, doi:10.1175/JCLI-D-11-00331.1.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., G. A. Vecchi, and S. Gadgil, 2004: Sea surface temperature of the Bay of Bengal derived from the TRMM Microwave Imager. J. Atmos. Oceanic Technol., 21, 12831290, doi:10.1175/1520-0426(2004)021<1283:SSTOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, doi:10.1175/JCLI-D-12-00493.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci. Rep., 3, 1192, doi:10.1038/srep01192.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, doi:10.1038/ngeo248.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., and Coauthors, 2012: The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planet. Sci. Lett., 335–336, 135144, doi:10.1016/j.epsl.2012.04.035.

    • Search Google Scholar
    • Export Citation
  • Cao, J., P. Yao, L. Wang, and K. Liu, 2014: Summer rainfall variability in low-latitude highlands of China and subtropical Indian Ocean dipole. J. Climate, 27, 880892, doi:10.1175/JCLI-D-13-00121.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., and R. Davis, 1982: Monthly mean sea-level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757784, doi:10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014a: Intermodel spread of East Asian summer monsoon simulations in CMIP5. Geophys. Res. Lett., 41, 13141321, doi:10.1002/2013GL058981.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014b: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, doi:10.1175/JCLI-D-13-00479.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., and L. Dell’Osso, 1984: Numerical prediction of the heavy rainfall vortex over eastern Asia monsoon region. J. Meteor. Soc. Japan, 62, 730747.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, doi:10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and S.-P. Weng, 1999: Interannual and intraseasonal variations in monsoon depressions and their westward-propagating predecessors. Mon. Wea. Rev., 127, 10051020, doi:10.1175/1520-0493(1999)127<1005:IAIVIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-H. Yoon, 2000: Some remarks on the westward propagation of the monsoon depression. Tellus, 52A, 487499, doi:10.1034/j.1600-0870.2000.01127.x.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., J.-H. Yoon, and S.-Y. Wang, 2005: Westward propagation of the Indian monsoon depression. Tellus, 57A, 758769, doi:10.1111/j.1600-0870.2005.00140.x.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2011: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10, 29432962, doi:10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, doi:10.1002/joc.1615.

    • Search Google Scholar
    • Export Citation
  • Eagle, R. A., C. Risi, J. L. Mitchell, J. M. Eiler, U. Seibt, J. D. Neelin, G. Li, and A. K. Tripati, 2013: High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proc. Natl. Acad. Sci. USA, 110, 88138818, doi:10.1073/pnas.1213366110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 15291534, doi:10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res.,117, D20114, doi:10.1029/2011JD017012.

  • Fudeyasu, H., S. Iizuka, and T. Matsuura, 2006: Seasonality of westward-propagating disturbances over Southeast and South Asia originated from typhoons. Geophys. Res. Lett.,33, L10809, doi:10.1029/2005GL025380.

  • Fujinami, H., and Coauthors, 2011: Characteristic intraseasonal oscillation of rainfall and its effect on interannual variability over Bangladesh during boreal summer. Int. J. Climatol., 31, 11921204, doi:10.1002/joc.2146.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., T. Yasunari, and A. Morimoto, 2014: Dynamics of distinct intraseasonal oscillation in summer monsoon rainfall over the Meghalaya–Bangladesh–western Myanmar region: Covariability between the tropics and mid-latitudes. Climate Dyn., 43, 2147–2166, doi:10.1007/s00382-013-2040-1.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, doi:10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and S. Gadgil, 2006: The Indian monsoon, GDP and agriculture. Econ. Polit. Wkly., 41, 48874895.

  • Gao, J., V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann, 2011: Precipitation water stable isotopes in the south Tibetan Plateau: Observations and modeling. J. Climate, 24, 31613178, doi:10.1175/2010JCLI3736.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., V. Masson-Delmotte, C. Risi, Y. He, and T. Yao, 2013: What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus, 65B, 21043, http://dx.doi.org/10.3402/tellusb.v65i0.21043.

    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, doi:10.5194/hess-17-837-2013.

    • Search Google Scholar
    • Export Citation
  • Gleeson, T., Y. Wada, M. F. P. Bierkens, and L. P. H. van Beek, 2012: Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197200, doi:10.1038/nature11295.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, doi:10.1029/2001GL014523.

    • Search Google Scholar
    • Export Citation
  • Halley, E., 1686: An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds. Philos. Trans. Roy. Soc. London, 16, 153168, doi:10.1098/rstl.1686.0026.

    • Search Google Scholar
    • Export Citation
  • Han, W., W. T. Liu, and J. Lin, 2006: Impact of atmospheric submonthly oscillations on sea surface temperature of the tropical Indian Ocean. Geophys. Res. Lett.,33, L03609, doi:10.1029/2005GL025082.

  • Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13 34513 372, doi:10.1029/JD092iD11p13345.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40, 21932222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2013: Interannual variability of monsoon precipitation and subcloud equivalent potential temperature. J. Climate, 26, 95079527, doi:10.1175/JCLI-D-12-00229.1.

    • Search Google Scholar
    • Export Citation
  • Husak, G. J., J. Michaelsen, and C. Funk, 2007: Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol., 27, 935944, doi:10.1002/joc.1441.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Ihara, C., Y. Kushnir, M. A. Cane, and V. H. de la Peña, 2007: Indian summer monsoon rainfall and its link with ENSO and Indian Ocean climate indices. Int. J. Climatol., 27, 179187, doi:10.1002/joc.1394.

    • Search Google Scholar
    • Export Citation
  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726, doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez Cisneros, B. E., and Coauthors, 2014: Freshwater resources. Climate Change 2014: Impacts, Adaptation, and Vulnerability. C. Field et al., Eds., Cambridge University Press, 229–269.

  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200, doi:10.1007/BF02289233.

    • Search Google Scholar
    • Export Citation
  • Kansakar, S. R., D. M. Hannah, J. Gerrard, and G. Rees, 2004: Spatial pattern in the precipitation regime of Nepal. Int. J. Climatol., 24, 16451659, doi:10.1002/joc.1098.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling. J. Geophys. Res.,116, D14103, doi:10.1029/2010JD015218.

  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res.,116, D14104, doi:10.1029/2010JD015220.

  • Kosaka, Y., S.-P. Xie, and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 54355453, doi:10.1175/2011JCLI4099.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, doi:10.1175/JCLI-D-12-00009.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377, doi:10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, doi:10.1175/2010JCLI2953.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, doi:10.1111/j.2153-3490.1980.tb01717.x.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2001: Baiu rainfall variability and associated monsoon teleconnections. J. Meteor. Soc. Japan, 79, 851860, doi:10.2151/jmsj.79.851.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., C. Zhang, and M. Sugi, 2000: Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 13541372, doi:10.1175/1520-0469(2000)057<1354:DOBITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, doi:10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., and R. Krishnan, 2005: On the association between the Indian summer monsoon and the tropical cyclone activity over northwest Pacific. Curr. Sci., 88, 602612.

    • Search Google Scholar
    • Export Citation
  • Lau, K., K. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, doi:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., C. Risi, I. Y. Fung, J. Worden, R. A. Scheepmaker, B. Lintner, and C. Frankenberg, 2012: Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. J. Geophys. Res.,117, D15112, doi:10.1029/2011JD017133.

  • Lei, Y., B. Hoskins, and J. Slingo, 2014: Natural variability of summer rainfall over China in HadCM3. Climate Dyn., 42, 417432, doi:10.1007/s00382-013-1726-8.

    • Search Google Scholar
    • Export Citation
  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., W. Yu, T. Li, V. S. N. Murty, and F. Tangang, 2013: Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Climate, 26, 10331046, doi:10.1175/JCLI-D-11-00627.1.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon. Wea. Rev., 131, 16501662, doi:10.1175/2554.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Y. Ding, 2008: Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley. Sci. China, 51D, 10211035, doi:10.1007/s11430-008-0073-9.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 46–59, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Statistical Forecasting Project Scientific Rep. 1, Massachusetts Institute of Technology, 49 pp.

  • Luo, Y., R. Zhang, W. Qian, Z. Luo, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 21642177, doi:10.1175/2010JCLI4032.1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, doi:10.1023/A:1015820616384.

  • Medina, S., R. A. Houze, A. Kumar, and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616, doi:10.1002/qj.601.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, doi:10.1073/pnas.1119150109.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., and K. A. Emanuel, 1999: Temperature profiles in radiative–convective equilibrium above surfaces at different heights. J. Geophys. Res., 104, 24 26524 271, doi:10.1029/1999JD900485.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, doi:10.1146/annurev-earth-040809-152456.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., 1973: Gamma distribution probability model for Asian summer monsoon monthly rainfall. Mon. Wea. Rev., 101, 160176., doi:10.1175/1520-0493(1973)101<0160:GDPMFA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., and W.-G. Huang, 1984: Orographic effects of the Tibetan Plateau on the rainfall variations over central China during the 1979 summer. J. Meteor. Soc. Japan, 62, 895909.

    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, doi:10.1175/2010JCLI3505.1.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., A. Munot, and D. Kothawale, 1994: All-India monthly and seasonal rainfall series: 1871–1993. Theor. Appl. Climatol., 49, 217224, doi:10.1007/BF00867461.

    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., D. S. Battisti, K. H. Nisancioglu, and C. M. Bitz, 2011: Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat. Geosci., 4, 474480, doi:10.1038/ngeo1169.

    • Search Google Scholar
    • Export Citation
  • Peña-Arancibia, J. L., A. I. J. M. van Dijk, L. J. Renzullo, and M. Mulligan, 2013: Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and South and East Asia. J. Hydrometeor., 14, 13231333, doi:10.1175/JHM-D-12-0132.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and A. Y. Hou, 1992: Response of a zonally symmetric atmosphere to subtropical thermal forcing. J. Atmos. Sci., 49, 17901799, doi:10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., F. W. Zwiers, and T. P. Barnett, 1981: Foundations of Principal Component Selection Rules. SIO Reference Series 81-4, Scripps Institution of Oceanography, 192 pp.

  • Privé, N. C., and R. A. Plumb, 2007a: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, doi:10.1175/JAS3916.1.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007b: Monsoon dynamics with interactive forcing. Part II: Impact of eddies and asymmetric geometries. J. Atmos. Sci., 64, 14311442, doi:10.1175/JAS3917.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2013: Monsoon melee. Science, 340, 14001401, doi:10.1126/science.340.6139.1400.

  • Rajagopalan, B., and P. Molnar, 2013: Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J. Geophys. Res. Atmos., 118, 11701178, doi:10.1002/jgrd.50124.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci., 91, 296306.

    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, F. Vimeux, and J. Jouzel, 2010: Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res.,115, D12118, doi:10.1029/2009JD013255.

  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330343, doi:10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, doi:10.1175/2009JCLI3128.1.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, doi:10.1175/2008JCLI2625.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, doi:10.1175/2007JAS2415.1.

    • Search Google Scholar
    • Export Citation
  • Shen