Characterizing Arctic Spring Onset

Jia He School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jia He in
Current site
Google Scholar
PubMed
Close
and
Robert X. Black School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Robert X. Black in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The high-latitude atmosphere experiences a rapid state transition during Arctic spring onset (ASO) with distinct warming in surface 2-m air temperature (T2m) occurring over broad geographical regions. Three methods are tested to optimally isolate this transition: The first two, the time derivative and the radius of curvature (RoC) methods, identify periods of large T2m acceleration. The third technique, the two-phase linear regression model, identifies a transition from an approximately steady winter state to a warming spring state. Although all three methods are largely successful in isolating the state transition associated with ASO, the RoC method is most effective in capturing the most rapid temperature increases and is adopted to define ASO in the study.

Statistical analyses indicate that the annual ASO timing is roughly bimodal with strong interannual variability but no significant long-term trends. Composite time evolution analyses of ASO uncover a critical warming region over northern Siberia common to most events. Several subcategories of ASO events are identified in which distinct warming signatures are also observed in the Greenland–North American, East Asian, and Alaskan sectors. The characteristic synoptic structures associated with these events are isolated via a parallel composite analysis of sea level pressure. These analyses provide initial evidence that, during ASO, the synoptic evolutions of semipermanent surface pressure systems (oceanic lows and continental highs) provide favorable conditions for rapid regional advective and diabatic warming in the lower troposphere.

Corresponding author address: Dr. Robert X. Black, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340. E-mail: rob.black@eas.gatech.edu

Abstract

The high-latitude atmosphere experiences a rapid state transition during Arctic spring onset (ASO) with distinct warming in surface 2-m air temperature (T2m) occurring over broad geographical regions. Three methods are tested to optimally isolate this transition: The first two, the time derivative and the radius of curvature (RoC) methods, identify periods of large T2m acceleration. The third technique, the two-phase linear regression model, identifies a transition from an approximately steady winter state to a warming spring state. Although all three methods are largely successful in isolating the state transition associated with ASO, the RoC method is most effective in capturing the most rapid temperature increases and is adopted to define ASO in the study.

Statistical analyses indicate that the annual ASO timing is roughly bimodal with strong interannual variability but no significant long-term trends. Composite time evolution analyses of ASO uncover a critical warming region over northern Siberia common to most events. Several subcategories of ASO events are identified in which distinct warming signatures are also observed in the Greenland–North American, East Asian, and Alaskan sectors. The characteristic synoptic structures associated with these events are isolated via a parallel composite analysis of sea level pressure. These analyses provide initial evidence that, during ASO, the synoptic evolutions of semipermanent surface pressure systems (oceanic lows and continental highs) provide favorable conditions for rapid regional advective and diabatic warming in the lower troposphere.

Corresponding author address: Dr. Robert X. Black, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340. E-mail: rob.black@eas.gatech.edu
Save
  • Aasa, A., J. Jaagus, R. Ahas, and M. Sepp, 2004: The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. Int. J. Climatol., 24, 15511564, doi:10.1002/joc.1066.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Black, R. X., and B. A. McDaniel, 2007: The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci., 64, 29322946, doi:10.1175/JAS3981.1.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., B. A. McDaniel, and W. A. Robinson, 2006: Stratosphere–troposphere coupling during spring onset. J. Climate, 19, 48914901, doi:10.1175/JCLI3907.1.

    • Search Google Scholar
    • Export Citation
  • Bodurtha, F. T., 1952: An investigation of anticyclogenesis in Alaska. J. Meteor., 9, 118125, doi:10.1175/1520-0469(1952)009<0118:AIOAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, X. H., and J. M. Wallace, 1993: Cluster analysis of the Northern Hemisphere wintertime 500-hPa height field: Spatial patterns. J. Atmos. Sci., 50, 26742696, doi:10.1175/1520-0469(1993)050<2674:CAOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and B. M. Buckley, 2009: Objective determination of monsoon season onset, withdrawal, and length. J. Geophys. Res., 114, D23109, doi:10.1029/2009JD012795.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, doi:10.1007/BF01026822.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and T. N. Krishnamurti, 1987: Heat-budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 24282449, doi:10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., J. Yoo, and S. Jaeger, 2002: Changing seasons: An effect of the North Atlantic Oscillation? J. Climate, 15, 435445, doi:10.1175/1520-0442(2002)015<0435:CSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2002: The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72, 19, doi:10.1007/s007040200008.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2004: Intra-seasonal variability of wintertime temperature over East Asia. Int. J. Climatol., 24, 131144, doi:10.1002/joc.1006.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Helsel, D. R., and R. M. Hirsch, 1992: Statistical Methods in Water Resources. Elsevier, 522 pp.

  • Linderholm, H. W., 2006: Growing season changes in the last century. Agric. For. Meteor., 137, 114, doi:10.1016/j.agrformet.2006.03.006.

    • Search Google Scholar
    • Export Citation
  • Liu, X. H., and R. Q. Ding, 2007: The relationship between the spring Asian atmospheric circulation and the previous winter Northern Hemisphere annular mode. Theor. Appl. Climatol., 88, 7181, doi:10.1007/s00704-006-0231-y.

    • Search Google Scholar
    • Export Citation
  • Lohmann, G., and K. H. Wiltshire, 2012: Winter atmospheric circulation signature for the timing of the spring bloom of diatoms in the North Sea. Mar. Biol., 159, 25732581, doi:10.1007/s00227-012-1993-7.

    • Search Google Scholar
    • Export Citation
  • Lund, R., and J. Reeves, 2002: Detection of undocumented changepoints: A revision of the two-phase regression model. J. Climate, 15, 25472554, doi:10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, S., and E. A. Munoz, 1997: Properties of the Arctic 2-meter air temperature field for 1979 to the present derived from a new gridded dataset. J. Climate, 10, 14281440, doi:10.1175/1520-0442(1997)010<1428:POTAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paluš, M., D. Novotná, and P. Tichavský, 2005: Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic Oscillation. Geophys. Res. Lett., 32, L12805, doi:10.1029/2005GL022838.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, doi:10.1029/2009GL038617.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2011a: The role of changes in the annual cycle in earlier onset of climatic spring in northern China. Adv. Atmos. Sci., 28, 284296, doi:10.1007/s00376-010-9221-1.

    • Search Google Scholar
    • Export Citation
  • Qian, C., Z. Wu, C. Fu, and D. Wang, 2011b: On changing El Niño: A view from time-varying annual cycle, interannual variability, and mean state. J. Climate, 24, 64866500, doi:10.1175/JCLI-D-10-05012.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., R. L. Colony, and S. Martin, 2000: Variations in surface air temperature observations in the Arctic, 1979–97. J. Climate, 13, 896914, doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., and T. M. Crawford, 2001: Detecting energy-balance modifications at the onset of spring. Phys. Geogr., 22, 394409.

  • Schwartz, M. D., R. Ahas, and A. Aasa, 2006: Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol., 12, 343351, doi:10.1111/j.1365-2486.2005.01097.x.

    • Search Google Scholar
    • Export Citation
  • Sparks, T. H., and A. Menzel, 2002: Observed changes in seasons: An overview. Int. J. Climatol., 22, 17151725, doi:10.1002/joc.821.

  • Stine, A. R., and P. Huybers, 2012: Changes in the seasonal cycle of temperature and atmospheric circulation. J. Climate, 25, 73627380, doi:10.1175/JCLI-D-11-00470.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, doi:10.1175/JAS3629.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1995: The seasons, global temperature, and precession. Science, 268, 5968, doi:10.1126/science.268.5207.59.

  • Ward, J. H., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Search Google Scholar
    • Export Citation
  • White, M. A., P. E. Thornton, and S. W. Running, 1997: A continental phenology model for monitoring vegetation responses to interannual climate variability. Global Biogeochem. Cycles, 11, 217234, doi:10.1029/97GB00330.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier/Academic Press, 676 pp.

  • Wiltshire, K. H., and B. F. J. Manly, 2004: The warming trend at Helgoland Roads, North Sea: Phytoplankton response. Helgol. Mar. Res., 58, 269273, doi:10.1007/s10152-004-0196-0.

    • Search Google Scholar
    • Export Citation
  • Wiltshire, K. H., A. M. Malzahn, K. Wirtz, W. Greve, S. Janisch, P. Mangelsdorf, B. F. J. Manly, and M. Boersma, 2008: Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long-term data at Helgoland Roads. Limnol. Oceanogr., 53, 12941302, doi:10.4319/lo.2008.53.4.1294.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 322 143 46
PDF Downloads 146 31 2