Impact of Initial Conditions versus External Forcing in Decadal Climate Predictions: A Sensitivity Experiment

Susanna Corti European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Bologna, Italy

Search for other papers by Susanna Corti in
Current site
Google Scholar
PubMed
Close
,
Tim Palmer European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Department of Physics, National Centre for Atmospheric Science, University of Oxford, Oxford, United Kingdom

Search for other papers by Tim Palmer in
Current site
Google Scholar
PubMed
Close
,
Magdalena Balmaseda European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Magdalena Balmaseda in
Current site
Google Scholar
PubMed
Close
,
Antje Weisheimer European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Department of Physics, National Centre for Atmospheric Science, University of Oxford, Oxford, United Kingdom

Search for other papers by Antje Weisheimer in
Current site
Google Scholar
PubMed
Close
,
Sybren Drijfhout Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by Sybren Drijfhout in
Current site
Google Scholar
PubMed
Close
,
Nick Dunstone Met Office, Exeter, United Kingdom

Search for other papers by Nick Dunstone in
Current site
Google Scholar
PubMed
Close
,
Wilco Hazeleger Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
Wageningen University, Wageningen, Netherlands
Netherlands eScience Center, Amsterdam, Netherlands

Search for other papers by Wilco Hazeleger in
Current site
Google Scholar
PubMed
Close
,
Jürgen Kröger Max Planck Institut für Meteorologie, Hamburg, Germany

Search for other papers by Jürgen Kröger in
Current site
Google Scholar
PubMed
Close
,
Holger Pohlmann Met Office, Exeter, United Kingdom
Max Planck Institut für Meteorologie, Hamburg, Germany

Search for other papers by Holger Pohlmann in
Current site
Google Scholar
PubMed
Close
,
Doug Smith Met Office, Exeter, United Kingdom

Search for other papers by Doug Smith in
Current site
Google Scholar
PubMed
Close
,
Jin-Song von Storch Max Planck Institut für Meteorologie, Hamburg, Germany

Search for other papers by Jin-Song von Storch in
Current site
Google Scholar
PubMed
Close
, and
Bert Wouters Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by Bert Wouters in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The impact of initial conditions relative to external forcings in decadal integrations from an ensemble of state-of-the-art prediction models has been assessed using specifically designed sensitivity experiments (SWAP experiments). They consist of two sets of 10-yr-long ensemble hindcasts for two initial dates in 1965 and 1995 using either the external forcings from the “correct” decades or swapping the forcings between the two decades. By comparing the two sets of integrations, the impact of external forcing versus initial conditions on the predictability over multiannual time scales was estimated as the function of lead time of the hindcast. It was found that over time scales longer than about 1 yr, the predictability of sea surface temperatures (SSTs) on a global scale arises mainly from the external forcing. However, the correct initialization has a longer impact on SST predictability over specific regions such as the North Atlantic, the northwestern Pacific, and the Southern Ocean. The impact of initialization is even longer and extends to wider regions when below-surface ocean variables are considered. For the western and eastern tropical Atlantic, the impact of initialization for the 700-m heat content (HTC700) extends to as much as 9 years for some of the models considered. In all models the impact of initial conditions on the predictability of the Atlantic meridional overturning circulation (AMOC) is dominant for the first 5 years.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00671.s1.

Corresponding author address: Susanna Corti, ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy. E-mail: s.corti@isac.cnr.it

Abstract

The impact of initial conditions relative to external forcings in decadal integrations from an ensemble of state-of-the-art prediction models has been assessed using specifically designed sensitivity experiments (SWAP experiments). They consist of two sets of 10-yr-long ensemble hindcasts for two initial dates in 1965 and 1995 using either the external forcings from the “correct” decades or swapping the forcings between the two decades. By comparing the two sets of integrations, the impact of external forcing versus initial conditions on the predictability over multiannual time scales was estimated as the function of lead time of the hindcast. It was found that over time scales longer than about 1 yr, the predictability of sea surface temperatures (SSTs) on a global scale arises mainly from the external forcing. However, the correct initialization has a longer impact on SST predictability over specific regions such as the North Atlantic, the northwestern Pacific, and the Southern Ocean. The impact of initialization is even longer and extends to wider regions when below-surface ocean variables are considered. For the western and eastern tropical Atlantic, the impact of initialization for the 700-m heat content (HTC700) extends to as much as 9 years for some of the models considered. In all models the impact of initial conditions on the predictability of the Atlantic meridional overturning circulation (AMOC) is dominant for the first 5 years.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00671.s1.

Corresponding author address: Susanna Corti, ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy. E-mail: s.corti@isac.cnr.it

Supplementary Materials

    • Supplemental Materials (PDF 2.21 MB)
Save
  • Ba, J., and Coauthors, 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 2333–2348, doi:10.1007/s00382-014-2056-1.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ORA-S3 ocean analysis system. Mon. Wea. Rev., 136, 30183034, doi:10.1175/2008MWR2433.1.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. Weaver, 2012, Evaluation of the ECMWF ocean reanalysis ORAS4. Quart. J. Roy. Meteor. Soc.,139, 1132–1161, doi:10.1002/qj.2063.

  • Boer, G. J., 2004: Long time-scale potential predictability in an ensemble of coupled climate models. Climate Dyn., 23, 2944, doi:10.1007/s00382-004-0419-8.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2011: Decadal potential predictability of twenty-first century climate. Climate Dyn., 36, 11191133, doi:10.1007/s00382-010-0747-9.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 62926311, doi:10.1175/2010JCLI3678.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2012: Potential impact of initialization on decadal predictions as assessed for CMIP5. Geophys. Res. Lett., 39, L12703, doi:10.1029/2012GL051974.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., H. Teng, G. A. Meehl, M. Kimoto, J. R. Knight, M. Latif, and A. Rosati, 2012: Systematic estimates of initial-value decadal predictability for six AOGCMs. J. Climate, 25, 18271846, doi:10.1175/JCLI-D-11-00227.1.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2013: An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Climate Dyn., 40, 1201–1222, doi:10.1007/s00382-012-1351-y.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19, 671692, doi:10.1007/s00382-002-0254-8.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and B. Sinha, 2003: Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett.,30, 1306, doi:10.1029/2002GL016504.

  • Collins, M., and Coauthors, 2006: Interannual to decadal climate predictability in the North Atlantic: A multimodel-ensemble study. J. Climate, 19, 11951203, doi:10.1175/JCLI3654.1.

    • Search Google Scholar
    • Export Citation
  • Corti, S., A. Weisheimer, T. N. Palmer, F. J. Doblas-Reyes, and L. Magnusson, 2012: Reliability of decadal predictions. Geophys. Res. Lett., 39, L21712, doi:10.1029/2012GL053354.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett.,37, L10701, doi:10.1029/2010GL043321.

  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, doi:10.1038/ncomms2704.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., and D. M. Smith, 2010: Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys. Res. Lett., 37, L02709, doi:10.1029/2009GL041609.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and K. Bryan, 1997a: Predictability of North Atlantic multidecadal climate variability. Science, 275, 181184, doi:10.1126/science.275.5297.181.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and K. Bryan, 1997b: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn., 13, 459488, doi:10.1007/s003820050177.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., S. Corti, J. Garcìa-Serrano, F. Doblas-Reyes, M. Balmaseda, and L. Magnusson, 2013: The Indian Ocean: The region of highest skill worldwide in decadal climate prediction. J. Climate, 26, 726–739, doi:10.1175/JCLI-D-12-00049.1.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and S. Drijfhout, 2006: Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J. Geophys. Res., 111, C03013, doi:10.1029/2005JC002942.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., V. Guemas, B. Wouters, S. Corti, I. Andreu-Burillo, F. J. Doblas-Reyes, K. Wyser, and M. Caian, 2013a: Multiyear climate predictions using two initialization strategies. Geophys. Res. Lett., 40, 17941798, doi:10.1002/grl.50355.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2013b: Predicting multiyear North Atlantic Ocean variability. J. Geophys. Res. Oceans, 118, 1087–1098, doi:10.1002/jgrc.20117.

    • Search Google Scholar
    • Export Citation
  • Johns, W., and Coauthors, 2011: Continuous array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292448, doi:10.1175/2010JCLI3997.1.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59, 20572072, doi:10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kröger, J., W. A. Müller, and J. S. von Storch, 2012: Impact of different ocean reanalyses on decadal climate prediction. Climate Dyn., 39, 795810, doi:10.1007/s00382-012-1310-7.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2011: A perspective on decadal climate variability and predictability. Deep-Sea Res. II, 58, 18801894, doi:10.1016/j.dsr2.2010.10.066.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climatic predictability. The Physical Basis of Climate and Climate Modeling, GARP Publication Series, Vol. 16, WMO, 132–136.

  • Lozier, M. S., V. Roussenov, M. S. C. Reed, and R. G. Williams, 2010: Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosci., 3, 728734, doi:10.1038/ngeo947.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Balmaseda, S. Corti, F. Molteni, and T. Stockdale, 2013: Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate Dyn., 41, 2393–2409, doi:10.1007/s00382-012-1599-2.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, doi:10.1175/2011JCLI4002.1.

    • Search Google Scholar
    • Export Citation
  • Matei, D., H. Pohlmann, J. Jungclaus, W. Müller, H. Haak, and J. Marotzke, 2012: Two tales of initializing decadal climate predictions experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523, doi:10.1175/JCLI-D-11-00633.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., K. W. Dixon, T. L. Delworth, and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., and Coauthors, 2014: Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J. Climate, 27, 64726496, doi:10.1175/JCLI-D-13-00476.1.

    • Search Google Scholar
    • Export Citation
  • Munoz, E., B. Kirtman, and W. Weijer, 2011: Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalyses. Deep-Sea Res. II, 58, 18481857, doi:10.1016/j.dsr2.2010.10.064.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-To-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472, doi:10.1175/3209.1.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., J. H. Jungclaus, A. Kohl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, doi:10.1175/2009JCLI2535.1.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., D. M. Smith, M. A. Balmaseda, N. S. Keenlyside, S. Masina, D. Matei, W. A. Muller, and P. Rogel, 2013: Predictability of the midlatitude Atlantic meridional overturning circulation in a multimodel system. Climate Dyn., 41, 775785, doi:10.1007/s00382-013-1663-6.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and J. M. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 3325–3338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, doi:10.1007/s00382-010-0947-3.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2011: Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM. Climate Dyn., 36, 18131834, doi:10.1007/s00382-010-0749-7.

    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, and G. A. Meehl, 2011: Predictability of the Atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J. Climate, 24, 60546076, doi:10.1175/2011JCLI4207.1.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., and T. N. Palmer, 2007: Ensemble decadal predictions from analysed initial conditions. Philos. Trans. Roy. Soc., A365, 21792191, doi:10.1098/rsta.2007.2079.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Wouters, B., W. Hazeleger, S. Drijfhout, G. J. van Oldenborgh, and V. Guemas, 2013: Multiyear predictability of the North Atlantic subpolar gyre. Geophys. Res. Lett., 40, 30803084, doi:10.1002/grl.50585.

    • Search Google Scholar
    • Export Citation