Observed Trends in Canada’s Climate and Influence of Low-Frequency Variability Modes

L. A. Vincent Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by L. A. Vincent in
Current site
Google Scholar
PubMed
Close
,
X. Zhang Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by X. Zhang in
Current site
Google Scholar
PubMed
Close
,
R. D. Brown Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by R. D. Brown in
Current site
Google Scholar
PubMed
Close
,
Y. Feng Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by Y. Feng in
Current site
Google Scholar
PubMed
Close
,
E. Mekis Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by E. Mekis in
Current site
Google Scholar
PubMed
Close
,
E. J. Milewska Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by E. J. Milewska in
Current site
Google Scholar
PubMed
Close
,
H. Wan Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by H. Wan in
Current site
Google Scholar
PubMed
Close
, and
X. L. Wang Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by X. L. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Trends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are sufficient temperature and precipitation data for trend analysis for southern Canada (south of 60°N) only. During this period, temperature has increased significantly across the region, precipitation has increased, and the amount of precipitation falling as snow has decreased in many areas south of 55°N. The results also show that modes of low-frequency variability modulate the spatial distribution and strength of the trends; however, they alone cannot explain the observed long-term trends in these climate variables.

Denotes Open Access content.

Corresponding author address: Lucie Vincent, Climate Research Division, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto ON M3H 5T4, Canada. E-mail: lucie.vincent@ec.gc.ca

Abstract

Trends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are sufficient temperature and precipitation data for trend analysis for southern Canada (south of 60°N) only. During this period, temperature has increased significantly across the region, precipitation has increased, and the amount of precipitation falling as snow has decreased in many areas south of 55°N. The results also show that modes of low-frequency variability modulate the spatial distribution and strength of the trends; however, they alone cannot explain the observed long-term trends in these climate variables.

Denotes Open Access content.

Corresponding author address: Lucie Vincent, Climate Research Division, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto ON M3H 5T4, Canada. E-mail: lucie.vincent@ec.gc.ca
Save
  • ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Alaka, M. A., and R. C. Elvander, 1972: Optimum interpolation from observations of mixed quality. Mon. Wea. Rev.,100, 612—624, doi:10.1175/1520-0493(1972)100<0612:OIFOOM>2.3.CO;2.

  • Alexander, L. V., and Coauthors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Allard, M., and M. Lemay, Eds., 2012: Nunavik and Nunatsiavut: From science to policy: An Integrated Regional Impact Study (IRIS) of climate change and modernization. Arctic Net Inc. Rep., 303 pp.

  • AMAP-SWIPA, 2011: Snow, water, ice and permafrost in the Arctic. Arctic Monitoring and Assessment Programme Executive Suumary, 15 pp. [Available online at http://www.amap.no/documents/doc/swipa-2011-executive-summary-snow-water-ice-and-permafrost-in-the-arctic/744.]

  • Anisimov, O. A., D. G. Vaughan, T. V. Callaghan, C. Furgal, H. Marchant, T. D. Prowse, H. Vilhjálmsson, and J. E. Walsh, 2007: Polar regions (Arctic and Antarctic). Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 653–685.

  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 1080, doi:10.1126/science.1152538.

    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, and M. Hrachowitz, 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change,4, 583–586, doi:10.1038/NCLIMATE2246.

  • Bonsal, B. R., and R. G. Lawford, 1999: Teleconnections between El Niño and La Niña events and summer extended dry spells on the Canadian Prairies. Int. J. Climatol., 19, 14451458, doi:10.1002/(SICI)1097-0088(19991115)19:13<1445::AID-JOC431>3.0.CO;2-7.

    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., A. Shabbar, and K. Higuchi, 2001: Impacts of low frequency variability modes on Canadian winter temperature. Int. J. Climatol., 21, 95108, doi:10.1002/joc.590.

    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., T. D. Prowse, C. R. Duguay, and M. P. Lacroix, 2006: Impacts of large-scale teleconnections on freshwater-ice break/freeze-up dates over Canada. J. Hydrol., 330, 340353, doi:10.1016/j.jhydrol.2006.03.022.

    • Search Google Scholar
    • Export Citation
  • Brabets, T. P., and M. A. Walvoord, 2009: Trends in streamflow in the Yukon River basin from 1944 to 2005 and the influence of the Pacific decadal oscillation. J. Hydrol., 371, 108119, doi:10.1016/j.jhydrol.2009.03.018.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., 1998: El Niño and North American snow cover. Proc. 55th Eastern Snow Conf., Jackson, NH, 165172.

  • Brown, R. D., 2000: Northern Hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 23392355, doi:10.1175/1520-0442(2000)013<2339:NHSCVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., 2010: Analysis of snow cover variability and change in Quebec, 1948-2005. Hydrol. Processes,24, 1929–1954, doi:10.1002/hyp.7565.

  • Brown, R. D., and R. O. Braaten, 1998: Spatial and temporal variability of Canadian monthly snow depths, 1946-1995. Atmos.–Ocean, 36, 3745, doi:10.1080/07055900.1998.9649605.

    • Search Google Scholar
    • Export Citation
  • Devine, K. A., and E. Mekis, 2008: Field accuracy of Canadian rain measurements. Atmos.–Ocean, 46, 213227, doi:10.3137/ao.460202.

  • Duguay, C. R., T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix, and P. Ménard, 2006: Recent trends in Canadian lake ice cover. Hydrol. Processes, 20, 781801, doi:10.1002/hyp.6131.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gillett, N. P., D. A. Stone, P. A. Stott, T. Nozawa, A. Y. Karpechko, G. C. Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of polar warming to human influence. Nat. Geosci., 1, 750754, doi:10.1038/ngeo338.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1955: Rank Correlation Methods. 2nd ed. Charles Griffin and Company, 196 pp.

  • Latifovic, R., and D. Pouliot, 2007: Analysis of climate change impacts on lake ice phenology in Canada using historical satellite data record. Remote Sens. Environ., 106, 492507, doi:10.1016/j.rse.2006.09.015.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383.

  • Liebmann, B., S. J. Camargo, A. Seth, J. A. Marengo, L. M. V. Carvalho, D. Allured, R. Fu, and C. S. Vera, 2007: Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J. Climate, 20, 20372050, doi:10.1175/JCLI4122.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, Y. Dai, and R. Horton, 2007: Causes of the northern high-latitude land surface winter climate change. Geophys. Res. Lett., 34, L14702, doi:10.1029/2007GL030196.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mekis, É., and R. Brown, 2010: Derivation of an adjustment factor map for the estimation of the water equivalent of snowfall from ruler measurements in Canada. Atmos.–Ocean, 48, 284293, doi:10.3137/AO1104.2010.

    • Search Google Scholar
    • Export Citation
  • Mekis, É., and L. A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos.–Ocean, 49, 163177, doi:10.1080/07055900.2011.583910.

    • Search Google Scholar
    • Export Citation
  • Meteorological Service of Canada, 2000: Canadian snow data. Meteorological Service of Canada Climate Processes and Earth Observation Division CRYSYS Project CD-ROM. [Available online at ftp://ccrp.tor.ec.gc.ca/pub/RBrown.]

  • Milewska, E., and W. D. Hogg, 2001: Spatial representativeness of a long-term climate network in Canada. Atmos.–Ocean, 39, 145161, doi:10.1080/07055900.2001.9649671.

    • Search Google Scholar
    • Export Citation
  • Milewska, E., and W. D. Hogg, 2002: Continuity of climatological observations with automation—Temperature and precipitation amounts from AWOS (Automated Weather Observing System). Atmos.–Ocean, 40, 333359, doi:10.3137/ao.400304.

    • Search Google Scholar
    • Export Citation
  • Min, S., X. Zhang, and F. W. Zwiers, 2008a: Human-induced Arctic moistening. Science, 320, 518, doi:10.1126/science.1153468.

  • Min, S., X. Zhang, F. W. Zwiers, and T. Agnew, 2008b: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, doi:10.1029/2008GL035725.

    • Search Google Scholar
    • Export Citation
  • Min, S., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, doi:10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Search Google Scholar
    • Export Citation
  • Najafi, M. R., F. Zwiers, and N. Gillett, 2015: Attribution of Arctic temperature change to greenhouse gas and aerosol influences. Nat. Climate Change, 5, 246–249, doi:10.1038/nclimate2524.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., 2011: Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather, 66, 1921, doi:10.1002/wea.660.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Scott, D., T. R. Yuzyk, and C. Whitney, 1999: The evolution of Canada’s hydrometric network: A century of development. Proc. 52nd Annual Conf., Halifax, Nova Scotia, Canada, Canadian Water Resources Association.

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and M. Khandekar, 1996: The impact of El Nino-Southern Oscillation on the temperature field over Canada. Atmos.–Ocean, 34, 401416, doi:10.1080/07055900.1996.9649570.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and B. Yu, 2012: Intraseasonal Canadian winter temperature responses to interannual and interdecadal Pacific SST modulations. Atmos.–Ocean, 50, 109121, doi:10.1080/07055900.2012.657154.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., B. Bonsal, and M. Khandekar, 1997: Canadian precipitation patterns associated with the Southern Oscillation. J. Climate, 10, 30163027, doi:10.1175/1520-0442(1997)010<3016:CPPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., D. R. Cayan, and M. D. Detinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 317–382.

  • Vincent, L. A., and É. Mekis, 2009: Discontinuities due to joining precipitation station observations in Canada. J. Appl. Meteor. Climatol., 48, 156166, doi:10.1175/2008JAMC2031.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., W. A. van Wijngaarden, and R. Hopkinson, 2007: Surface temperature and humidity trends in Canada for 1953–2005. J. Climate, 20, 51005113, doi:10.1175/JCLI4293.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., E. J. Milewska, R. Hopkinson, and L. Malone, 2009: Bias in minimum temperature introduced by a redefinition of the climatological day at the Canadian synoptic stations. J. Appl. Meteor. Climatol., 48, 21602168, doi:10.1175/2009JAMC2191.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., X. L. Wang, E. J. Milewska, H. Wan, F. Yang, and V. Swail, 2012: A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res., 117, D18110, doi:10.1029/2012JD017859.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2012: NOAA’s Merged Land–Ocean Surface Temperature analysis. Bull. Amer. Meteor. Soc., 93, 16771685, doi:10.1175/BAMS-D-11-00241.1.

    • Search Google Scholar
    • Export Citation
  • Wan, H., X. L. Wang, and V. R. Swail, 2007: A quality assurance system for Canadian hourly pressure data. J. Appl. Meteor. Climatol., 46, 18041817, doi:10.1175/2007JAMC1484.1.

    • Search Google Scholar
    • Export Citation
  • Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 12091225, doi:10.1175/2009JCLI3200.1.

    • Search Google Scholar
    • Export Citation
  • Wan, H., X. Zhang, F. Zwiers, and S.-K. Min, 2015: Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Climate Dyn., doi:10.1007/s00382-014-2423-y, in press.

    • Search Google Scholar
    • Export Citation
  • Wang, D., C. Wang, X. Yang, and J. Lu, 2005: Winter Northern Hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. J. Geophy. Res. Lett., 32, L16706, doi:10.1029/2005GL022952.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., H. Wan, and V. R. Swail, 2006: Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. J. Climate, 19, 896915, doi:10.1175/JCLI3664.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, and L. A. Vincent, 2014: Observed changes in one-in-20 year extremes of Canadian surface air temperatures. Atmos.–Ocean, 52, 222231, doi:10.1080/07055900.2013.818526.

    • Search Google Scholar
    • Export Citation
  • Warren, F. J., and D. S. Lemmen, Eds., 2014: Canada in a changing climate: Sector perspectives on impacts and adaptation. Government of Canada Rep., 286 pp.

  • Zhang, X., L. A. Vincent, W. D. Hogg, and A. Niitsoo, 2000: Temperature and precipitation trends in Canada during the 20th century. Atmos.–Ocean, 38, 395429, doi:10.1080/07055900.2000.9649654.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., K. D. Harvey, W. D. Hogg, and T. R. Yuzyk, 2001: Trends in Canadian streamflow. Water Resour. Res., 37, 987998, doi:10.1029/2000WR900357.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, and P. A. Stott, 2006: Multimodel multisignal climate change detection at regional scale. J. Climate, 19, 42944307, doi:10.1175/JCLI3851.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4314 1340 288
PDF Downloads 2694 699 30