North Atlantic Storm-Track Sensitivity to Warming Increases with Model Resolution

Jeff Willison North Carolina State University, Raleigh, North Carolina

Search for other papers by Jeff Willison in
Current site
Google Scholar
PubMed
Close
,
Walter A. Robinson North Carolina State University, Raleigh, North Carolina

Search for other papers by Walter A. Robinson in
Current site
Google Scholar
PubMed
Close
, and
Gary M. Lackmann North Carolina State University, Raleigh, North Carolina

Search for other papers by Gary M. Lackmann in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Mesoscale condensational heating can increase the sensitivity of modeled extratropical cyclogenesis to horizontal resolution. Here a pseudo global warming experiment is presented to investigate how this heating-enhanced sensitivity to resolution changes in a warmer and thus moister atmosphere. The Weather Research and Forecasting (WRF) Model with 120- and 20-km grid spacing is used to simulate current and future climates. It is found that the North Atlantic storm-track response to global warming is amplified at the higher model resolution. The most dramatic changes occur over the northeastern Atlantic, where resolution typical of current general circulation models (GCMs) results in a smaller global warming response in comparison with that in the 20-km simulations. These results suggest that caution is warranted when interpreting projections from coarse-resolution GCMs of future cyclone activity over the northeastern Atlantic.

Corresponding author address: Jeff Willison, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. E-mail: jawill20@ncsu.edu

Abstract

Mesoscale condensational heating can increase the sensitivity of modeled extratropical cyclogenesis to horizontal resolution. Here a pseudo global warming experiment is presented to investigate how this heating-enhanced sensitivity to resolution changes in a warmer and thus moister atmosphere. The Weather Research and Forecasting (WRF) Model with 120- and 20-km grid spacing is used to simulate current and future climates. It is found that the North Atlantic storm-track response to global warming is amplified at the higher model resolution. The most dramatic changes occur over the northeastern Atlantic, where resolution typical of current general circulation models (GCMs) results in a smaller global warming response in comparison with that in the 20-km simulations. These results suggest that caution is warranted when interpreting projections from coarse-resolution GCMs of future cyclone activity over the northeastern Atlantic.

Corresponding author address: Jeff Willison, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. E-mail: jawill20@ncsu.edu
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 2276–2301, doi:10.1175/2008JCLI2678.1.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607–1623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blender, R., and M. Schubert, 2000: Cyclone tracking in different spatial and temporal resolutions. Mon. Wea. Rev., 128, 377–384, doi:10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1976: Fourier Analysis of Time Series: An Introduction. Wiley Series in Probability and Statistics - Applied Probability and Statistics Section, Vol. 159, Wiley, 258 pp.

  • Booth, J., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41 (3–4), 787–802, doi:10.1007/s00382-012-1472-3.

    • Search Google Scholar
    • Export Citation
  • Champion, A. J., K. I. Hodges, L. O. Bengtsson, N. S. Keenlyside, and M. Esch, 2011: Impact of increasing resolution and a warmer climate on extreme weather from Northern Hemisphere extratropical cyclones. Tellus, 63A, 893–906, doi:10.1111/j.1600-0870.2011.00538.x.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2014: Impacts of background field removal on CMIP5 projected changes in Pacific winter cyclone activity. J. Geophys. Res. Atmos., 119, 4626–4639, doi:10.1002/2013JD020746.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2003: Using mean flow change as a proxy to infer interdecadal storm track variability. J. Climate, 16, 2178–2196, doi:10.1175/2773.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos.,117, D23118, doi:10.1029/2012JD018578.

  • Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246–260, doi:10.1175/JCLI-D-11-00707.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North America and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 6882–6903, doi:10.1175/JCLI-D-12-00498.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2009: The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Wea. Rev., 137, 99–115, doi:10.1175/2008MWR2491.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 2322–2327, doi:10.1002/grl.50105.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929–1953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., M. Déqué, F. Valero, and D. Stephenson, 1998: North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus, 50A, 573–595, doi:10.1034/j.1600-0870.1998.t01-4-00002.x.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eichler, T. P., N. Gaggini, and Z. Pan, 2013: Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J. Geophys. Res. Atmos., 118, 3919–3932, doi:10.1002/jgrd.50286.

    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16, 2262–2274, doi:10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, T. J. Woollings, G. Zappa, and K. I. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett.,39, L18707, doi:10.1029/2012GL052873.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573–2586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jung, T., S. K. Gulev, I. Rudeva, and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132, 1839–1857, doi:10.1256/qj.05.212.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate,25, 3155–3172, doi:10.1175/JCLI-D-11-00265.1.

  • Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. The final report of ICCAP, Research Institute for Humanity and Nature (RIHN), 43–46.

  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 59–74, doi:10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, F., W. D. Collins, M. F. Wehner, D. L. Williamson, and J. G. Olson, 2011: Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards a robust projection across different horizontal resolutions. Tellus, 63A, 876–883, doi:10.1111/j.1600-0870.2011.00543.x.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K., B. A. Colle, and Z. Zhang, 2015: Evaluation of historical and future cool season precipitation over the eastern United States and western Atlantic storm track using CMIP5 models. J. Climate, 28, 451–467, doi:10.1175/JCLI-D-14-00343.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett.,34, L06805, doi:10.1029/2006GL028443.

  • Mallard, M. S., G. M. Lackmann, A. Aiyyer, and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 4876–4893, doi:10.1175/JCLI-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and T. N. Palmer, 2011: Accuracy of climate change predictions using high resolution simulations as surrogates of truth. Geophys. Res. Lett.,38, L05803, doi:10.1029/2010GL046618.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109 (1–2), 213–241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., 2012: Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys. Res. Lett.,39, L19707, doi:10.1029/2012GL053032.

  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529–547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 5797–5806, doi:10.1175/2008JCLI2099.1.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. Allen, and D. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351–363, doi:10.1007/s00382-006-0180-2.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129, 2989–3012, doi:10.1256/qj.02.174.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578–599, doi:10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893–913, doi:10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144–154, doi:10.1016/j.jhydrol.2006.07.023.

    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669–672, doi:10.1029/96GL00265.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595–612, doi:10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith, 2007: Confidence, uncertainty and decision-support relevance in climate predictions. Philos. Trans. Roy. Soc. London, A365, 2145–2161, doi:10.1098/rsta.2007.2074.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849–874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2006: The intensity of precipitation during extratropical cyclones in global warming simulations: A link to cyclone intensity? Tellus, 58A, 82–97, doi:10.1111/j.1600-0870.2006.00147.x.

    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 2234–2250, doi:10.1175/JAS-D-12-0226.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett.,32, L18701, doi:10.1029/2005GL023684.

  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 5379–5396, doi:10.1175/JCLI-D-12-00501.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1113 452 183
PDF Downloads 552 138 5