Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations

Bomin Sun * I. M. Systems Group Inc., Rockville, Maryland

Search for other papers by Bomin Sun in
Current site
Google Scholar
PubMed
Close
,
Melissa Free NOAA/Air Resources Laboratory, College Park, Maryland

Search for other papers by Melissa Free in
Current site
Google Scholar
PubMed
Close
,
Hye Lim Yoo NOAA/Air Resources Laboratory, College Park, Maryland
Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Hye Lim Yoo in
Current site
Google Scholar
PubMed
Close
,
Michael J. Foster Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Michael J. Foster in
Current site
Google Scholar
PubMed
Close
,
Andrew Heidinger NOAA/NESDIS/Center for Satellite Applications and Research, Madison, Wisconsin

Search for other papers by Andrew Heidinger in
Current site
Google Scholar
PubMed
Close
, and
Karl-Göran Karlsson ** Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Search for other papers by Karl-Göran Karlsson in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Radiation from AVHRR Data Edition 1 (CLARA-A1) satellite datasets are assessed using homogeneity-adjusted weather station data. The station data, considered as “ground truth” in the evaluation, are generally well correlated with the ISCCP and PATMOS-x data and with the physically related variables diurnal temperature range, precipitation, and surface solar radiation. Among the satellite products, overall, the PATMOS-x data have the highest interannual correlations with the weather station cloud data and those other physically related variables. The CLARA-A1 daytime dataset generally shows the lowest correlations, even after trends are removed. For the U.S. mean, the station dataset shows a negative but not statistically significant trend of −0.40% decade−1, and satellite products show larger downward trends ranging from −0.55% to −5.00% decade−1 for 1984–2007. PATMOS-x 1330 local time trends for U.S. mean cloud cover are closest to those in the station data, followed by the PATMOS-x diurnally corrected dataset and ISCCP, with CLARA-A1 having a large negative trend contrasting strongly with the station data. These results tend to validate the usefulness of weather station cloud data for monitoring changes in cloud cover, and they show that the long-term stability of satellite cloud datasets can be assessed by comparison to homogeneity-adjusted station data and other physically related variables.

Corresponding author address: Bomin Sun, I. M. Systems Group, 3206 Tower Oaks Blvd., Suite 3000, Rockville, MD 20852. E-mail: bomin.sun@noaa.gov

Abstract

Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Radiation from AVHRR Data Edition 1 (CLARA-A1) satellite datasets are assessed using homogeneity-adjusted weather station data. The station data, considered as “ground truth” in the evaluation, are generally well correlated with the ISCCP and PATMOS-x data and with the physically related variables diurnal temperature range, precipitation, and surface solar radiation. Among the satellite products, overall, the PATMOS-x data have the highest interannual correlations with the weather station cloud data and those other physically related variables. The CLARA-A1 daytime dataset generally shows the lowest correlations, even after trends are removed. For the U.S. mean, the station dataset shows a negative but not statistically significant trend of −0.40% decade−1, and satellite products show larger downward trends ranging from −0.55% to −5.00% decade−1 for 1984–2007. PATMOS-x 1330 local time trends for U.S. mean cloud cover are closest to those in the station data, followed by the PATMOS-x diurnally corrected dataset and ISCCP, with CLARA-A1 having a large negative trend contrasting strongly with the station data. These results tend to validate the usefulness of weather station cloud data for monitoring changes in cloud cover, and they show that the long-term stability of satellite cloud datasets can be assessed by comparison to homogeneity-adjusted station data and other physically related variables.

Corresponding author address: Bomin Sun, I. M. Systems Group, 3206 Tower Oaks Blvd., Suite 3000, Rockville, MD 20852. E-mail: bomin.sun@noaa.gov
Save
  • Augustine, J. A., G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, 2005: An update on SURFRAD—The GCOS surface radiation budget network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, doi:10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820, doi:10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campbell, G., 2004: View angle dependence of cloudiness and the trend in ISCCP cloudiness. 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P6.7. [Available online at https://ams.confex.com/ams/pdfpapers/79041.pdf.]

  • Dai, A., T. R. Karl, B. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597606, doi:10.1175/BAMS-87-5-597.

    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., D. W. Nelson, R. S. Stone, D. U. Longenecker, G. Carbaugh, J. M. Harris, and J. Wendell, 2006: Decadal variations in surface solar irradiance as observed in a globally remote network. J. Geophys. Res., 111, D19101, doi:10.1029/2005JD006901.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2014: Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean. J. Climate, 27, 23862404, doi:10.1175/JCLI-D-13-00352.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., S. G. Warren, and C. J. Hahn, 2014: Climatic atlas of clouds over land and ocean. [Available online at www.atmos.washington.edu/CloudMap/index.html.]

  • Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and A. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414–425, doi:10.1175/JCLI-D-11-00666.1.

    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and A. Heidinger, 2014: Entering the era of +30-year satellite cloud climatologies: A North American case study. J. Climate, 27, 66876697, doi:10.1175/JCLI-D-14-00068.1.

    • Search Google Scholar
    • Export Citation
  • Free, M., and B. Sun, 2013: Time-varying biases in U.S. total cloud cover. J. Atmos. Oceanic Technol., 30, 28382849, doi:10.1175/JTECH-D-13-00026.1.

    • Search Google Scholar
    • Export Citation
  • Free, M., and B. Sun, 2014: Trends in U.S. total cloud cover from a homogeneity-adjusted dataset. J. Climate,10, 4959–4969, doi:10.1175/JCLI-D-13-00722.1.

  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. M. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, doi:10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., W. C. Straka, C. C. Molling, J. T. Sullivan, and X. Q. Wu, 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, doi:10.1080/01431161.2010.496472.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., A. T. Evan, M. J. Foster, and A. Walther, 2012: A naïve Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, doi:10.1175/JAMC-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended (PATMOS-x) AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, doi:10.1175/BAMS-D-12-00246.1.

    • Search Google Scholar
    • Export Citation
  • Karlsson, K.-G., and Coauthors, 2013: CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR. Atmos. Chem. Phys., 13, 53515367, doi:10.5194/acp-13-5351-2013.

    • Search Google Scholar
    • Export Citation
  • Kondragunta, C. R., and A. Gruber, 1996: Seasonal and annual variability of the diurnal cycle of clouds. J. Geophys. Res., 101, 21 37721 390, doi:10.1029/96JD01544.

    • Search Google Scholar
    • Export Citation
  • Kotarba, A., 2015: Evaluation of ISCCP cloud amount with MODIS observations. Atmos. Res., 153, 310317, doi:10.1016/j.atmosres.2014.09.006.

    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature dataset, version 3. J. Geophys. Res., 116, D19121, doi:10.1029/2011JD016187.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., E. G. Dutton, J. A. Augustine, W. Wiscombe, M. Wild, S. A. McFarlane, and C. J. Flynn, 2009: Significant decadal brightening of downwelling shortwave in the continental United States. J. Geophys. Res., 114, D00D06, doi:10.1029/2008JD011263.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., and C. N. Long, 2002: Best estimate radiation flux value added product: Algorithm operational details and explanations. DOE Tech Rep. DOE/SC-ARM/TR-008, 51 pp., doi:10.2172/1020733.

  • Stubenrauch, C. J., W. B. Rossow, and S. Kinne, 2012: Assessment of global cloud datasets from satellites: A project of the World Climate Research Programme Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel. WCRP Rep. 23/2012, 176 pp. [Available online at www.wcrp-climate.org/documents/GEWEX_Cloud_Assessment_2012.pdf.]

  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Sun, B., 2003: Cloudiness over the contiguous United States: Contemporary changes observed using ground-based and ISCCP D2 data. Geophys. Res. Lett., 30, 1053, doi:10.1029/2002GL015887.

    • Search Google Scholar
    • Export Citation
  • Sun, B., P. Ya. Groisman, and I. I. Mokhov, 2001: Recent changes in cloud-type frequency and inferred increases in convection over the United States and the former USSR. J. Climate, 14, 18641880, doi:10.1175/1520-0442(2001)014<1864:RCICTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. Eastman, and C. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations: 1971–96. J. Climate, 20, 717738, doi:10.1175/JCLI4031.1.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at the Earth’s surface. Science, 308, 847850, doi:10.1126/science.1103215.

    • Search Google Scholar
    • Export Citation
  • Wu, W., Y. Liu, M. P. Jensen, T. Toto, M. J. Foster, and C. N. Long, 2014: A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United States. J. Geophys. Res. Atmos., 119, 34383459, doi:10.1002/2013JD019813.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1166 356 115
PDF Downloads 373 55 3