• ABARE, 2007: Australian crop report. Australian Bureau of Agricultural and Resource Economics Tech. Rep. 141, 19 pp. [Available online at http://data.daff.gov.au/data/warehouse/pe_abare99001345/acr07.1.pdf.]

  • ABARE, 2013: Australian crop report. Australian Bureau of Agricultural and Resource Economics Tech. Rep. 168, 21 pp. [Available online at http://data.daff.gov.au/data/warehouse/aucrpd9abcc003/aucrpd9abcc003201306/AustCropReport20130612_v1.0.0.pdf.]

  • Ainsworth, E. A., , and S. P. Long, 2005: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165, 351372, doi:10.1111/j.1469-8137.2004.01224.x.

    • Search Google Scholar
    • Export Citation
  • Anderson-Teixeira, K. J., , P. K. Snyder, , T. E. Twine, , S. V. Cuadra, , M. H. Costa, , and E. H. DeLucia, 2012: Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Climate Change, 2, 177181, doi:10.1038/nclimate1346.

    • Search Google Scholar
    • Export Citation
  • Andresen, J., , S. Hilberg, , and K. Kunkel, 2012: Historical climate and climate trends in the midwestern USA. Great Lakes Integrated Sciences and Assessment Tech. Rep., 18 pp. [Available online at http://glisa.umich.edu/media/files/NCA/MTIT_Historical.pdf.]

  • Arnell, N. W., and et al. , 2002: The consequences of CO2 stabilisation for the impacts of climate change. Climatic Change, 53, 413446, doi:10.1023/A:1015277014327.

    • Search Google Scholar
    • Export Citation
  • Asner, G. P., , A. J. Elmore, , L. P. Olander, , R. E. Martin, , and A. T. Harris, 2004: Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour., 29, 261299, doi:10.1146/annurev.energy.29.062403.102142.

    • Search Google Scholar
    • Export Citation
  • Asseng, S., , I. Foster, , and N. C. Turner, 2011: The impact of temperature variability on wheat yields. Global Change Biol., 17, 9971012, doi:10.1111/j.1365-2486.2010.02262.x.

    • Search Google Scholar
    • Export Citation
  • Asseng, S., and et al. , 2013: Uncertainty in simulating wheat yields under climate change. Nat. Climate Change, 3, 827832, doi:10.1038/nclimate1916.

    • Search Google Scholar
    • Export Citation
  • Atkinson, M. D., , P. S. Kettlewell, , P. D. Hollins, , D. B. Stephenson, , and N. V. Hardwick, 2005: Summer climate mediates UK wheat quality response to winter North Atlantic Oscillation. Agric. For. Meteor., 130, 2737, doi:10.1016/j.agrformet.2005.02.002.

    • Search Google Scholar
    • Export Citation
  • Ball, J. T., , I. E. Woodrow, , and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog. Photosynth. Res., 4, 221224, doi:10.1007/978-94-017-0519-6_48.

    • Search Google Scholar
    • Export Citation
  • Boé, J., , L. Terray, , F. Habets, , and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, doi:10.1002/joc.1602.

    • Search Google Scholar
    • Export Citation
  • Butler, E. E., , and P. Huybers, 2013: Adaptation of US maize to temperature variations. Nat. Climate Change, 3, 6872, doi:10.1038/nclimate1585.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and T. Cowan, 2008: Dynamics of late autumn rainfall reduction over southeastern Australia. Geophys. Res. Lett., 35, L09708, doi:10.1029/2008GL033727.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and T. Cowan, 2013: Southeast Australia autumn rainfall reduction: A climate-change-induced poleward shift of ocean–atmosphere circulation. J. Climate, 26, 189205, doi:10.1175/JCLI-D-12-00035.1.

    • Search Google Scholar
    • Export Citation
  • Cai, X., , D. Wang, , and R. Laurent, 2009: Impact of climate change on crop yield: A case study of rainfed corn in central Illinois. J. Appl. Meteor. Climatol., 48, 18681881, doi:10.1175/2009JAMC1880.1.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., , and J. M. Norman, 1998: An Introduction to Environmental Biophysics. 2nd ed. Springer-Verlag, 286 pp.

  • Cantelaube, P., , J.-M. Terres, , and F. Doblas-Reyes, 2004: Influence of climate variability on Europeanagriculture—Analysis of winter wheat production. Climate Res., 27, 135144, doi:10.3354/cr027135.

    • Search Google Scholar
    • Export Citation
  • Challinor, A. J., , E. S. Simelton, , E. D. G. Fraser, , D. Hemming, , and M. Collins, 2010: Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett.,5, doi:10.1088/1748-9326/5/3/034012.

  • Collatz, G. J., , M. Ribas-Carbo, , and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538, doi:10.1071/PP9920519.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., , J. S. Whitaker, , and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, doi:10.1175/BAMS-87-2-175.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , K. E. Trenberth, , and T. R. Karl, 1998: Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett., 25, 33673370, doi:10.1029/98GL52511.

    • Search Google Scholar
    • Export Citation
  • Donner, S. D., , and C. J. Kucharik, 2008: Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl. Acad. Sci. USA, 105, 45134518, doi:10.1073/pnas.0708300105.

    • Search Google Scholar
    • Export Citation
  • Donner, S. D., , M. T. Coe, , J. D. Lenters, , T. E. Twine, , and J. A. Foley, 2002: Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochem. Cycles,16, 16-1–16-19, doi:10.1029/2001GB001396.

  • DEPI, 2012: Growing wheat. Department of Environment and Primary Industries Tech. Note AG0548. [Available online at http://www.depi.vic.gov.au/agriculture-and-food/grains-and-other-crops/crop-production/growing-wheat.]

  • FAO, cited 2012: FertiStat Fertilizer Use Statistics. [Available online at http://www.fao.org/ag/agp/fertistat/index_en.htm.]

  • Farquhar, G. D., , and T. D. Sharkey, 1982: Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33, 317345, doi:10.1146/annurev.pp.33.060182.001533.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., , S. von Caemmerer, , and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, doi:10.1007/BF00386231.

    • Search Google Scholar
    • Export Citation
  • Ferris, R., , R. H. Ellis, , T. R. Wheeler, , and P. Hadley, 1998: Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot., 82, 631639, doi:10.1006/anbo.1998.0740.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., , I. C. Prentice, , N. Ramankutty, , S. Levis, , D. Pollard, , S. Sitch, , and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, doi:10.1029/96GB02692.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and et al. , 2005: Global consequences of land use. Science, 309, 570574, doi:10.1126/science.1111772.

  • French, R. J., , and J. E. Schultz, 1984: Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Aust. J. Agric. Res., 35, 743764, doi:10.1071/AR9840743.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., , J. B. Bremnes, , J. E. Haugen, , and T. Engen-Skaugen, 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, doi:10.5194/hess-16-3383-2012.

    • Search Google Scholar
    • Export Citation
  • Hatfield, J., 2012: Agriculture in the Midwest. Great Lakes Integrated Sciences and Assessment Tech. Rep., 8 pp. [Available online at http://glisa.umich.edu/media/files/NCA/MTIT_Agriculture.pdf.]

  • Hulme, M., 1992: A 1951–80 global land precipitation climatology for the evaluation of general circulation models. Climate Dyn., 7, 5772, doi:10.1007/BF00209609.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1994: Validation of large-scale precipitation fields in general circulation models. Global Precipitations and Climate Change, M. Desbois and F. Désalmand, Eds., NATO ASI Series, Vol. 26, Springer-Verlag, 387–406, doi:10.1007/978-3-642-79268-7_25.

  • IGBP, cited xxxx: Global soil data products CD-ROM (IGBP-DIS). International Geosphere-Biosphere Programme Tech. Rep. [Available online at http://daac.ornl.gov/SOILS/guides/igbp.html.]

  • Iizumi, T., and et al. , 2014: Historical changes in global yields: Major cereal and legume crops from 1982 to 2006. Glob. Ecol. Biogeogr., 23, 346–357, doi:10.1111/geb.12120.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf.]

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., 2003: Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the interannual variability in maize yield. Earth Interact., 7, 133, doi:10.1175/1087-3562(2003)007<0001:EOAPAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , and K. R. Brye, 2003: Integrated Biosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J. Environ. Qual., 32, 247268, doi:10.2134/jeq2003.2470.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , and N. Ramankutty, 2005: Trends and variability in U.S. corn yields over the twentieth century. Earth Interact., 9, 129, doi:10.1175/EI098.1.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , and T. E. Twine, 2007: Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric. For. Meteor., 146, 134158, doi:10.1016/j.agrformet.2007.05.011.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and et al. , 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795825, doi:10.1029/1999GB001138.

    • Search Google Scholar
    • Export Citation
  • Leakey, A. D. B., , M. Uribelarrea, , E. A. Ainsworth, , S. L. Naidu, , A. Rogers, , D. R. Ort, , and S. P. Long, 2006: Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol., 140, 779790, doi:10.1104/pp.105.073957.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , and G. P. Asner, 2003: Climate and management contributions to recent trends in US agricultural yields. Science, 299, 1032, doi:10.1126/science.1077838.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , and C. B. Field, 2007: Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett.,2, 014002, doi:10.1088/1748-9326/2/1/014002.

  • Lobell, D. B., , and C. B. Field, 2008: Estimation of the CO2 fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Global Change Biol., 14, 451, doi:10.1111/j.1365-2486.2007.01536.x.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , M. Bänziger, , C. Magorokosho, , and B. Vivek, 2011a: Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Climate Change, 1, 4245, doi:10.1038/nclimate1043.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , W. Schlenker, , and J. Costa-Roberts, 2011b: Climate trends and global crop production since 1980. Science, 333, 616620, doi:10.1126/science.1204531.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , A. Sibley, , and J. I. Ortiz-Monasterio, 2012: Extreme heat effects on wheat senescence in India. Nat. Climate Change, 2, 186189, doi:10.1038/nclimate1356.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , G. L. Hammer, , G. McLean, , C. Messina, , M. J. Roberts, , and W. Schlenker, 2013: The critical role of extreme heat for maize production in the United States. Nat. Climate Change, 3, 497501, doi:10.1038/nclimate1832.

    • Search Google Scholar
    • Export Citation
  • Malone, R. W., , D. W. Meek, , J. L. Hatfield, , M. E. Mann, , R. J. Jaquis, , and L. Ma, 2009: Quasi-biennial corn yield cycles in Iowa. Agric. For. Meteor., 149, 10871094, doi:10.1016/j.agrformet.2009.01.009.

    • Search Google Scholar
    • Export Citation
  • McGrath, J. M., , and D. B. Lobell, 2011: An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Global Change Biol., 17, 26892696, doi:10.1111/j.1365-2486.2011.02406.x.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., , N. J. Rosenberg, , and K. Mendoza, 2012: Simulated impacts of three decadal climate variability phenomena on dryland corn and wheat yields in the Missouri River Basin. Agric. For. Meteor., 152, 109124, doi:10.1016/j.agrformet.2011.09.011.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., , and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, 126, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and et al. , 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Neild, R. E., , and J. E. Newman, 1987: Growing season characteristics and requirements in the Corn Belt. Iowa State University Cooperative Extension Service and National Corn Handbook Rep. NCH-40.

  • New, M., , M. Hulme, , and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1985: Impact of the southern oscillation on Australian crops. J. Climatol., 5, 553560, doi:10.1002/joc.3370050508.

  • Nicholls, N., 1997: Increased Australian wheat yield due to recent climate trends. Nature, 387, 484485, doi:10.1038/387484a0.

  • Patricola, C. M., , and K. H. Cook, 2013: Mid-twenty-first century warm season climate change in the Central United States. Part I: Regional and global model predictions. Climate Dyn., 40, 551568, doi:10.1007/s00382-012-1605-8.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., , A. J. Pitman, , and S. A. Sisson, 2009: Smaller projected increases in 20-year temperature returns over Australia in skill-selected climate models. Geophys. Res. Lett., 36, L06710, doi:10.1029/2009GL037293.

    • Search Google Scholar
    • Export Citation
  • Persson, T., , A. Garcia y Garcia, , J. Paz, , J. Jones, , and G. Hoogenboom, 2009: Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agric. Syst., 100, 1121, doi:10.1016/j.agsy.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., , and S. E. Perkins, 2008: Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR4 models. Earth Interact., 12, 150, doi:10.1175/2008EI260.1.

    • Search Google Scholar
    • Export Citation
  • Pook, M., , S. Lisson, , J. Risbey, , C. C. Ummenhofer, , P. McIntosh, , and M. Rebbeck, 2009: The autumn break for cropping in southeast Australia: Trends, synoptic influences and impacts on yield. Int. J. Climatol., 29, 20122026, doi:10.1002/joc.1833.

    • Search Google Scholar
    • Export Citation
  • Porter, J. R., , and M. Gawith, 1999: Temperatures and the growth and development of wheat: A review. Eur. J. Agron., 10, 2336, doi:10.1016/S1161-0301(98)00047-1.

    • Search Google Scholar
    • Export Citation
  • Porter, J. R., , and M. A. Semenov, 2005: Crop responses to climatic variation. Philos. Trans. Roy. Soc. London, 360B, 20212035, doi:10.1098/rstb.2005.1752.

    • Search Google Scholar
    • Export Citation
  • Potgieter, A., , H. Meinke, , A. Doherty, , V. O. Sadras, , G. Hammer, , S. Crimp, , and D. Rodriguez, 2013: Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia. Climatic Change, 117, 163179, doi:10.1007/s10584-012-0543-0.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., , and J. A. Foley, 1999: Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecol. Biogeogr., 8, 381396, doi:10.1046/j.1365-2699.1999.00141.x.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and et al. , 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., , and C. J. Kucharik, 2011: Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric. For. Meteor., 151, 882894, doi:10.1016/j.agrformet.2011.02.010.

    • Search Google Scholar
    • Export Citation
  • Sánchez, B., , A. Rasmussen, , and J. R. Porter, 2014: Temperatures and the growth and development of maize and rice: A review. Global Change Biol., 20, 408417, doi:10.1111/gcb.12389.

    • Search Google Scholar
    • Export Citation
  • Schaefer, K., and et al. , 2012: A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. J. Geophys. Res.,117, G03010, doi:10.1029/2012JG001960.

  • Schlenker, W., , and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damage to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, doi:10.1073/pnas.0906865106.

    • Search Google Scholar
    • Export Citation
  • Southworth, J., , J. C. Randolph, , M. Habeck, , O. C. Doering, , R. A. Pfeifer, , D. G. Rao, , and J. J. Johnston, 2000: Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agric. Ecosyst. Environ., 82, 139158, doi:10.1016/S0167-8809(00)00223-1.

    • Search Google Scholar
    • Export Citation
  • Southworth, J., , R. A. Pfeifer, , M. Habeck, , J. C. Randolph, , O. C. Doering, , J. J. Johnston, , and D. G. Rao, 2002: Changes in soybean yields in the midwestern United States as a result of future changes in climate, climate variability, and CO2 fertilization. Climatic Change, 53, 447475, doi:10.1023/A:1015266425630.

    • Search Google Scholar
    • Export Citation
  • Stephens, D. J., , and T. J. Lyons, 1998: Variability and trends in sowing dates across the Australian wheatbelt. Aust. J. Agric. Res., 49, 11111118, doi:10.1071/A96173.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , and W. Drosdowsky, 2013: The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 10211034, doi:10.1002/joc.3492.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., , and C. J. Kucharik, 2008: Evaluating a terrestrial ecosystem model with satellite information of greenness. J. Geophys. Res., 113, G03027, doi:10.1029/2007JG000599.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., , and C. J. Kucharik, 2009: Climate impacts on net primary productivity trends in natural and managed ecosystems of the central and eastern United States. Agric. For. Meteor., 149, 2143–2161, doi:10.1016/j.agrformet.2009.05.012.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., , J. J. Bryant, , K. T. Richter, , C. J. Bernacchi, , K. D. McConnaughay, , S. J. Morris, , and A. D. B. Leakey, 2013: Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biol., 19, 28382852, doi:10.1111/gcb.12270.

    • Search Google Scholar
    • Export Citation
  • USDA, cited 2013: Table 10: Nitrogen used on corn, rate per fertilized acre receiving nitrogen, selected States, 1964–2010. [Available online at http://www.ers.usda.gov/data-products/fertilizer-use-and-price.]

  • USDA-NASS, 2009: 2007 Census of agriculture, volume 1. National Agricultural Statistics Service Tech. Rep. AC-07-A-51, 639 pp. [Available online at http://www.agcensus.usda.gov/Publications/2007/Full_Report/usv1.pdf.]

  • VanLoocke, A., , C. J. Bernacchi, , and T. E. Twine, 2010: The impacts of Miscanthus×giganteus production on the Midwest US hydrologic cycle. Global Change Biol. Bioenergy, 2, 180191, doi:10.1111/j.1757-1707.2010.01053.x.

    • Search Google Scholar
    • Export Citation
  • vanLoocke, A., , T. E. Twine, , M. Zeri, , and C. J. Bernacchi, 2012: A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agric. For. Meteor., 164, 8295, doi:10.1016/j.agrformet.2012.05.016.

    • Search Google Scholar
    • Export Citation
  • Wang, E., , J. Xu, , Q. Jiang, , and J. Austin, 2009: Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level. Theor. Appl. Climatol., 95, 311330, doi:10.1007/s00704-008-0009-5.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , E. Wang, , and D. L. Liu, 2011: Modelling the impacts of climate change on wheat yield and field water balance over the Murray–Darling Basin in Australia. Theor. Appl. Climatol., 104, 285300, doi:10.1007/s00704-010-0343-2.

    • Search Google Scholar
    • Export Citation
  • Wardlaw, I. F., , and C. W. Wright, 1994: Heat tolerance in temperate cereals: An overview. Aust. J. Plant Physiol., 21, 695703, doi:10.1071/PP9940695.

    • Search Google Scholar
    • Export Citation
  • Webler, G., , D. R. Roberti, , S. V. Cuadra, , V. S. Moreira, , and M. H. Costa, 2012: Evaluation of a dynamic agroecosystem model (Agro-IBIS) for soybean in southern Brazil. Earth Interact., 16, 1–15, doi:10.1175/2012EI000452.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, T., , and J. von Braun, 2013: Climate change impacts on global food security. Science, 341, 508513, doi:10.1126/science.1239402.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 321 65
PDF Downloads 236 236 66

How Climate Change Affects Extremes in Maize and Wheat Yield in Two Cropping Regions

View More View Less
  • 1 * Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota
  • | 3 International Center for Tropical Agriculture, Nairobi, Kenya, and Nature Conservancy, Seattle, Washington
  • | 4 University of Oklahoma, Norman, Oklahoma
  • | 5 School of Geographical Sciences and Urban Planning, and Consortium for Science, Policy and Outcomes, Arizona State University, Tempe, Arizona
  • | 6 ** Centre for Sustainability Studies, Lund University, Lund, Sweden
© Get Permissions
Restricted access

Abstract

Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth.

While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5°C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8°–4.5°C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.

Denotes Open Access content.

Corresponding author address: Caroline C. Ummenhofer, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543. E-mail: cummenhofer@whoi.edu

Abstract

Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth.

While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5°C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8°–4.5°C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.

Denotes Open Access content.

Corresponding author address: Caroline C. Ummenhofer, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543. E-mail: cummenhofer@whoi.edu
Save