• Arritt, R. W., , and M. Rummukainen, 2011: Challenges in regional-scale climate modeling. Bull. Amer. Meteor. Soc., 92, 365368, doi:10.1175/2010BAMS2971.1.

    • Search Google Scholar
    • Export Citation
  • Berg, N., , A. Hall, , F. Sun, , S. C. Capps, , D. Walton, , B. Langenbrunner, , and D. Neelin, 2015: Twenty-first-century precipitation changes over the Los Angeles region. J. Climate,28, 401–421, doi:10.1175/JCLI-D-14-00316.1.

  • Braganza, K., , D. J. Karoly, , A. C. Hirst, , M. E. Mann, , P. Stott, , R. J. Stouffer, , and S. F. B. Tett, 2003: Simple indices of global climate variability and change: Part I—Variability and correlation structure. Climate Dyn., 20, 491502, doi:10.1007/s00382-002-0286-0.

    • Search Google Scholar
    • Export Citation
  • Braganza, K., , D. J. Karoly, , A. C. Hirst, , P. Stott, , R. J. Stouffer, , and S. F. B. Tett, 2004: Simple indices of global climate variability and change. Part II: Attribution of climate change during the twentieth century. Climate Dyn., 22, 823838, doi:10.1007/s00382-004-0413-1.

    • Search Google Scholar
    • Export Citation
  • Cabré, M., , S. A. Solman, , and M. N. Nuñez, 2010: Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: Validity and limitations. Climatic Change, 98, 449469, doi:10.1007/s10584-009-9737-5.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., , H.-N. S. Chin, , D. C. Bader, , and G. Bala, 2009: Evaluation of a WRF based dynamical downscaling simulation over California. Climatic Change, 95, 499521, doi:10.1007/s10584-009-9583-5.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., , E. P. Maurer, , M. D. Dettinger, , M. Tyree, , and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87 (Suppl. 1), 2142, doi:10.1007/s10584-007-9377-6.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conil, S., , and A. Hall, 2006: Local regimes of atmospheric variability: A case study of Southern California. J. Climate, 19, 43084325, doi:10.1175/JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and et al. , 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

  • Dong, B., , J. M. Gregory, , and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, doi:10.1175/2009JCLI2652.1.

    • Search Google Scholar
    • Export Citation
  • Drost, F., , D. Karoly, , and K. Braganza, 2012: Communicating global climate change using simple indices: An update. Climate Dyn., 39, 989999, doi:10.1007/s00382-011-1227-6.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and et al. , 2006: Simulations of present and future climates in the western United States with four nested regional climate models. J. Climate, 19, 873895, doi:10.1175/JCLI3669.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., 2010: Robust land–ocean contrasts in energy and water cycle feedbacks. J. Climate, 23, 46774693, doi:10.1175/2010JCLI3451.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and L. O. Mearns, 1991: Approaches to regional climate change simulation: A review. Rev. Geophys., 29, 191216, doi:10.1029/90RG02636.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 11411158, doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , C. S. Brodeur, , and G. T. Bates, 1994: Regional climate change scenarios over the United States produced with a nested regional climate model. J. Climate, 7, 375399, doi:10.1175/1520-0442(1994)007<0375:RCCSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , J. W. Hurrell, , M. R. Marinucci, , and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and et al. , 2001: Regional climate information—Evaluation and projections. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 583–638.

  • Giorgi, F., , C. Jones, , and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull.,58, 175–183.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and et al. , 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., , M. D. Dettinger, , and D. R. Cayan, 2008: Downscaling with constructed analogues: Daily precipitation and temperature fields over the Unites States. California Energy Commission Tech. Rep. CEC-500-2007-123, 48 pp.

  • Hong, S. Y., , and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hughes, M., , A. Hall, , and R. G. Fovell, 2007: Dynamical controls on the diurnal cycle of temperature in complex topography. Climate Dyn., 29, 277292, doi:10.1007/s00382-007-0239-8.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., , J. M. Gregory, , M. J. Webb, , D. M. Sexton, , and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, doi:10.1007/s00382-007-0306-1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Soc., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawase, H., , T. Yoshikane, , M. Hara, , F. Kimura, , T. Yasunari, , B. Ailikun, , H. Ueda, , and T. Inoue, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2011: Vital details of global warming are eluding forecasters. Science, 334, 173174, doi:10.1126/science.334.6053.173.

  • Kerr, R. A., 2013: Forecasting regional climate change flunks its first test. Science, 339, 638, doi:10.1126/science.339.6120.638.

  • Kharin, V. V., , and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793–799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., 2001: A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2. Geophys. Res. Lett., 28, 29512954, doi:10.1029/2001GL013198.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., , and J. C. Chiang, 2007: Control of land–ocean temperature contrast by ocean heat uptake. Geophys. Res. Lett., 34, L13704, doi:10.1029/2007GL029755.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., , L. O. Mearns, , F. Giorgi, , and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84,8995, doi:10.1175/BAMS-84-1-89.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., , Y. Qian, , X. Bian, , W. M. Washington, , J. Han, , and J. O. Roads, 2004: Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change, 62, 75113, doi:10.1023/B:CLIM.0000013692.50640.55.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., , E. A. Rosenberg, , C. Lin, , B. Nijssen, , V. Mishra, , K. M. Andreadis, , E. P. Maurer, , and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , D. Ovens, , K. Westrick, , and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., 2007: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Climatic Change, 82, 309325, doi:10.1007/s10584-006-9180-9.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , H. G. Hidalgo, , T. Das, , M. D. Dettinger, , and D. R. Cayan, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., , I. Bogardi, , F. Giorgi, , I. Matyasovszky, , and M. Palecki, 1999: Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling. J. Geophys. Res., 104 (D6), 66036621, doi:10.1029/1998JD200042.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., , S. Manabe, , T. Tokioka, , and V. Meleshko, 1990: Equilibrium climate change. Climate Change: The IPCC Scientific Assessment, J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 131–172.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.,102 (D14), 16 663–16 682, doi:10.1029/97JD00237.

  • Pierce, D. W., , T. Das, , D. R. Cayan, , E. P. Maurer, , N. Miller, , Y. Bao, , and M. Tyree, 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Reclamation, 2013: Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with preceding Information, and Summary of User Needs. Prepared by the U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center, Denver, CO, 47 pp. [Available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html.]

  • Salathé, E. P., Jr., , R. Steed, , C. F. Mass, , and P. H. Zahn, 2008: A high-resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, doi:10.1175/2008JCLI2090.1.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., , L. R. Leung, , Y. Qian, , and Y. Zhang, 2010: Regional climate model projections for the State of Washington. Climatic Change, 102, 5175, doi:10.1007/s10584-010-9849-y.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , T. M. L. Wigley, , M. E. Schlesinger, , and J. F. B. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. MPI Rep. 47, 29 pp.

  • Sato, T., , F. Kimura, , and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, doi:10.1016/j.jhydrol.2006.07.023.

    • Search Google Scholar
    • Export Citation
  • Schiermeier, Q., 2010: The real holes in climate science. Nature, 463, 284287, doi:10.1038/463284a.

  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , M. G. Duda, , X.-Y. Huang, , W. Wang, , and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Snyder, M. A., , J. L. Bell, , L. C. Sloan, , P. B. Duffy, , and B. Govindasamy, 2002: Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys. Res. Lett., 29 (11), doi:10.1029/2001GL014431.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , B. Dong, , and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Sun, F., , D. B. Walton, , and A. Hall, 2015: A hybrid dynamical–statistical downscaling technique. Part II: End-of-century warming projections predict a new climate state in the Los Angeles region. J. Climate, 28, 46184636, doi:10.1175/JCLI-D-14-00197.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , R. L. Smith, , D. Nychka, , and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, doi:10.1175/JCLI3363.1.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , A. Dufour, , and B. McAvaney, 2003: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dyn., 20, 807823, doi:10.1007/s00382-002-0298-9.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr., 21, 530548, doi:10.1177/030913339702100403.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., , E. P. Maurer, , A. Kumar, , and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107 (D20), 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., , L. R. Leung, , V. Sridhar, , and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 150 19
PDF Downloads 140 140 16

A Hybrid Dynamical–Statistical Downscaling Technique. Part I: Development and Validation of the Technique

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

In this study (Part I), the mid-twenty-first-century surface air temperature increase in the entire CMIP5 ensemble is downscaled to very high resolution (2 km) over the Los Angeles region, using a new hybrid dynamical–statistical technique. This technique combines the ability of dynamical downscaling to capture finescale dynamics with the computational savings of a statistical model to downscale multiple GCMs. First, dynamical downscaling is applied to five GCMs. Guided by an understanding of the underlying local dynamics, a simple statistical model is built relating the GCM input and the dynamically downscaled output. This statistical model is used to approximate the warming patterns of the remaining GCMs, as if they had been dynamically downscaled. The full 32-member ensemble allows for robust estimates of the most likely warming and uncertainty resulting from intermodel differences. The warming averaged over the region has an ensemble mean of 2.3°C, with a 95% confidence interval ranging from 1.0° to 3.6°C. Inland and high elevation areas warm more than coastal areas year round, and by as much as 60% in the summer months. A comparison to other common statistical downscaling techniques shows that the hybrid method produces similar regional-mean warming outcomes but demonstrates considerable improvement in capturing the spatial details. Additionally, this hybrid technique incorporates an understanding of the physical mechanisms shaping the region’s warming patterns, enhancing the credibility of the final results.

Corresponding author address: Daniel B. Walton, 7229 Math Sciences Building, 405 Hilgard Ave., Los Angeles, CA 90095. E-mail: waltond@atmos.ucla.edu

Abstract

In this study (Part I), the mid-twenty-first-century surface air temperature increase in the entire CMIP5 ensemble is downscaled to very high resolution (2 km) over the Los Angeles region, using a new hybrid dynamical–statistical technique. This technique combines the ability of dynamical downscaling to capture finescale dynamics with the computational savings of a statistical model to downscale multiple GCMs. First, dynamical downscaling is applied to five GCMs. Guided by an understanding of the underlying local dynamics, a simple statistical model is built relating the GCM input and the dynamically downscaled output. This statistical model is used to approximate the warming patterns of the remaining GCMs, as if they had been dynamically downscaled. The full 32-member ensemble allows for robust estimates of the most likely warming and uncertainty resulting from intermodel differences. The warming averaged over the region has an ensemble mean of 2.3°C, with a 95% confidence interval ranging from 1.0° to 3.6°C. Inland and high elevation areas warm more than coastal areas year round, and by as much as 60% in the summer months. A comparison to other common statistical downscaling techniques shows that the hybrid method produces similar regional-mean warming outcomes but demonstrates considerable improvement in capturing the spatial details. Additionally, this hybrid technique incorporates an understanding of the physical mechanisms shaping the region’s warming patterns, enhancing the credibility of the final results.

Corresponding author address: Daniel B. Walton, 7229 Math Sciences Building, 405 Hilgard Ave., Los Angeles, CA 90095. E-mail: waltond@atmos.ucla.edu
Save