• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , C. Deser, , and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192431, doi:10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., , P. J. Pegion, , S. D. Schubert, , and M. J. Suarez, 2000: Atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. NASA Tech. Memo. 104606, Vol. 17, Goddard Space Flight Center, Greenbelt, MD, 194 pp.

  • Barlow, M., , S. Nigam, , and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., , and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, doi:10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgman, R., , A. Clement, , C. Mitas, , J. Chen, , and K. Esslinger, 2008a: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35, L01704, doi:10.1029/2007GL031830.

    • Search Google Scholar
    • Export Citation
  • Burgman, R., , P. S. Schopf, , and B. P. Kirtman, 2008b: Decadal modulation of ENSO in a hybrid coupled model. J. Climate, 21, 54825500, doi:10.1175/2008JCLI1933.1.

    • Search Google Scholar
    • Export Citation
  • Burgman, R., , R. Seager, , A. Clement, , and C. Herweijer, 2010: Role of tropical Pacific SSTs in global medieval hydroclimate: A modeling study. Geophys. Res. Lett., 37, L06705, doi:10.1029/2009GL042239.

    • Search Google Scholar
    • Export Citation
  • Campana, K., , and P. Caplan, Eds., 2005: Technical procedures bulletin for the T382 Global Forecast System. [Available online at http://www.emc.ncep.noaa.gov/gc_wmb/Documentation/TPBoct05/T382.TPB.FINAL.htm.]

  • Clement, A. C., , R. Burgman, , and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enfield, D., , A. M. Mestas-Nuñez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S . Geophys. Res. Lett.,28, 2077–2080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and S. G. H. Philander, 2000: Is El Niño changing? Science, 288, 19972002, doi:10.1126/science.288.5473.1997.

  • Findell, K. L., , and T. L. Delworth, 2010: Impact of common sea surface temperature anomalies on global drought and pluvial frequency. J. Climate, 23, 485503, doi:10.1175/2009JCLI3153.1.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and et al. , 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., , and R. Seager, 2008: The global footprint of persistent extra-tropical drought in the instrumental era. Int. J. Climatol., 28, 17611774, doi:10.1002/joc.1590.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., , R. Seager, , and E. R. Cook, 2006: North American droughts of the mid to late nineteenth century: A history, simulation and implication for Mediaeval drought. Holocene, 16, 159171, doi:10.1191/0959683606hl917rp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Y. Yao, , E. S. Yarosh, , J. E. Janowiak, , and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, doi:10.1126/science.1079053.

  • Hoerling, M., and et al. , 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, doi:10.1175/JCLI-D-12-00270.1.

  • Hu, Q., , and S. Feng, 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15, 11891202, doi:10.1175/1520-0442(2002)015<1189:IRVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , S. Feng, , and R. J. Oglesby, 2011: Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J. Climate, 24, 55555570, doi:10.1175/2011JCLI4060.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , and P. S. Schopf, 1998: Decadal variability of ENSO predictability and prediction. J. Climate, 11, 28042822, doi:10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2014: The North American Multimodel Ensemble: Phase-1 Seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science,266, 634–637, doi:10.1126/science.266.5185.634.

  • Mantua, N., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , M. A. Palecki, , and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., , A. Timmermann, , M. F. Stuecker, , M. H. England, , M. Merrifield, , F.-F. Jin, , and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, doi:10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi:10.1029/2005GL023680.

    • Search Google Scholar
    • Export Citation
  • Mo, K., , J. N. Paegle, , and R. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, doi:10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K., , J. E. Schemm, , and S. You, 2009: Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Climate, 22, 59625982, doi:10.1175/2009JCLI2966.1.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1955: Some meteorological aspects of drought. Mon. Wea. Rev., 83, 199205, doi:10.1175/1520-0493(1955)083<0199:SMAOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., , M. Barlow, , and E. H. Berbery, 1999: Analysis links Pacific decadal variability to drought and streamflow in the United States. Eos, Trans. Amer. Geophys. Union, 80, 621625, doi:10.1029/99EO00412.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19, 31673179, doi:10.1175/JCLI3765.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , M. A. Kistler, , and A. Kumer, 2002: Predictability of zonal means during boreal summer. J. Climate, 15, 420434, doi:10.1175/1520-0442(2002)015<0420:POZMDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004a: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, doi:10.1126/science.1095048.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and et al. , 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Harnik, , Y. Kushnir, , W. Robinson, , and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , C. Herweijer, , N. Naik, , and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, doi:10.1175/JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and et al. , 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , R. Burgman, , Y. Kushnir, , A. Clement, , E. Cook, , N. Naik, , and J. Miller, 2008: Tropical Pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs. J. Climate, 21, 61756190, doi:10.1175/2008JCLI2170.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Naik, , M. Ting, , M. A. Cane, , N. Harnik, , and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242, 16401645, doi:10.1126/science.242.4886.1640.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N.-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , S. Schubert, , M. Suarez, , and R. Koster, 2010: The physical mechanism by which the leading patterns of SST variability impact U.S. precipitation. J. Climate, 23, 18151836, doi:10.1175/2009JCLI3188.1.

    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., , and J. T. Overpeck, 1998: 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc., 79, 26932714, doi:10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and J. L. Kinter III, 2009: Analysis of the relationship of U.S. droughts with SST and soil moisture: Distinguishing the time scale of droughts. J. Climate, 22, 45204538, doi:10.1175/2009JCLI2841.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , Y. Zou, , S. T. Kim, , and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 3
PDF Downloads 18 18 1

Simulated U.S. Drought Response to Interannual and Decadal Pacific SST Variability

View More View Less
  • 1 Department of Earth and Environment, Florida International University, Miami, Florida
© Get Permissions
Restricted access

Abstract

Idealized atmospheric general circulation model (AGCM) experiments by the U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group were used in order to study the influence of natural modes of sea surface temperature (SST) variability in the Pacific on drought in the contiguous United States. The current study expands on previous results by examining the atmospheric response of three AGCMs to three different patterns of the idealized Pacific SST anomalies that operate on different time scales: low-frequency (decadal), high-frequency (interannual), and a pan-Pacific pattern that retains characteristics of interannual and decadal variability. While forcing patterns are generally similar in appearance, results indicate that differences in the relative amplitude of the equatorial and extratropical components of the SST forcing are sufficient to give rise to differing teleconnections, leading to regional differences in the amplitude and significance of the precipitation response. Results indicate that the differences in simulated drought response between AGCMs to different cool-phase (La Niña–like) SST patterns are determined by model sensitivity to changes in the relative amplitude of the equatorial and extratropical components of the SSTA forcing, the strength of the land–atmosphere coupling, and by the amplitude of internal atmospheric variability. Results indicate that the northwestern United States and Great Plains regions are particularly sensitive to the extratropical component of the SST forcing. Evidence is also found that when the cool-phase patterns of SST combine, as they have in recent years, constructive interference leads to an enhanced drought response over the Great Plains.

Denotes Open Access content.

Corresponding author address: Robert Burgman, Florida International University, 11200 SW 8th St., Miami, FL 33199. E-mail: rburgman@fiu.edu

Abstract

Idealized atmospheric general circulation model (AGCM) experiments by the U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group were used in order to study the influence of natural modes of sea surface temperature (SST) variability in the Pacific on drought in the contiguous United States. The current study expands on previous results by examining the atmospheric response of three AGCMs to three different patterns of the idealized Pacific SST anomalies that operate on different time scales: low-frequency (decadal), high-frequency (interannual), and a pan-Pacific pattern that retains characteristics of interannual and decadal variability. While forcing patterns are generally similar in appearance, results indicate that differences in the relative amplitude of the equatorial and extratropical components of the SST forcing are sufficient to give rise to differing teleconnections, leading to regional differences in the amplitude and significance of the precipitation response. Results indicate that the differences in simulated drought response between AGCMs to different cool-phase (La Niña–like) SST patterns are determined by model sensitivity to changes in the relative amplitude of the equatorial and extratropical components of the SSTA forcing, the strength of the land–atmosphere coupling, and by the amplitude of internal atmospheric variability. Results indicate that the northwestern United States and Great Plains regions are particularly sensitive to the extratropical component of the SST forcing. Evidence is also found that when the cool-phase patterns of SST combine, as they have in recent years, constructive interference leads to an enhanced drought response over the Great Plains.

Denotes Open Access content.

Corresponding author address: Robert Burgman, Florida International University, 11200 SW 8th St., Miami, FL 33199. E-mail: rburgman@fiu.edu
Save