• Alexander, M. A., , U. S. Bhatt, , J. E. Walsh, , M. S. Timlin, , J. S. Miller, , and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905, doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., , L. Ferranti, , F. Molteni, , and T. N. Palmer, 2010: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Quart. J. Roy. Meteor. Soc., 136, 16551664, doi:10.1002/qj.661.

    • Search Google Scholar
    • Export Citation
  • Bhatt, S. U., and et al. , 2013: Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens.,5, 4229–4254, doi:10.3390/rs5094229.

  • Doblas-Reyes, F. J., , J. Garcia-Serrano, , F. Lienert, , A. Pinto-Biescas, , and L. R. L. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, doi:10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Fang, Z., , and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 18971914, doi:10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, M., , K. Yamazaki, , H. Nakamura, , and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358, doi:10.1175/1520-0442(1999)012<3347:DATCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, M., , J. Inoue, , and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , A. Kumar, , G. D. Bell, , M. S. Halpert, , and R. W. Higgins, 2008: Role of the Pacific–North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35, L20701, doi:10.1029/2008GL035205.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., , and Y. Tachibana, 2006: Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge. Geophys. Res. Lett., 33, L08709, doi:10.1029/2006GL025838.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., , and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett., 34, L12705, doi:10.1029/2007GL029897.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., , Y. Tachibana, , F. Nishio, , and M. A. Danchenkov, 2001: Does the fresh water supply from the Amur river flowing into the Sea of Okhotsk affect sea ice formation? J. Meteor. Soc. Japan, 79, 123129, doi:10.2151/jmsj.79.123.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., , K. Yamazaki, , and Y. Tachibana, 2004: The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res., 109, D20114, doi:10.1029/2004JD004514.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., , K. Yamazaki, , and J. M. Wallace, 2010: Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett., 37, L07701, doi:10.1029/2009GL042356.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., , S. Nihashi, , E. Hashiya, , and T. Watanabe, 2006: Interannual variability of sea ice area in the Sea of Okhotsk: Importance of surface heat flux in fall. J. Meteor. Soc. Japan, 84, 907919, doi:10.2151/jmsj.84.907.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., , R. Senan, , R. E. Benestad, , and A. Melsom, 2011: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dyn., 38, 2437–2448, doi:10.1007/s00382-011-1169-z.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., , D. J. Cavalieri, , P. Gloersen, , H. J. Zwally, , and J. C. Comiso, 1999: Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 104, 20 83720 856, doi:10.1029/1999JC900082.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., , J. M. Wallace, , and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., , Y. Katagiri, , S. Minobe, , and I. G. Rigor, 2007: Autumn atmospheric preconditioning for interannual variability of wintertime sea-ice in the Okhotsk Sea. J. Oceanogr., 63, 255265, doi:10.1007/s10872-007-0026-5.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2013: Influence of Arctic sea ice on European summer precipitation. Environ. Res. Lett., 8, 044015, doi:10.1088/1748-9326/8/4/044015.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., , A. Barrett, , J. Stroeve, , D. Kindig, , and M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., , M. Honda, , and K. Takeuchi, 1996: The abrupt decrease of the sea ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian low. J. Meteor. Soc. Japan,74, 579–584.

  • Tachibana, Y., , K. Oshima, , and M. Ogi, 2008: Seasonal and interannual variations of Amur River discharge and their relationship to large-scale atmospheric patterns and moisture fluxes. J. Geophys. Res., 113, D16102, doi:10.1029/2007JD009555.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Ukita, J., , M. Honda, , H. Nakamura, , Y. Tachibana, , D. J. Cavalieri, , C. L. Parkinson, , H. Koide, , and K. Yamamoto, 2007: Northern Hemisphere sea ice variability: Lag structure and its implications. Tellus, 59A, 261272, doi:10.1111/j.1600-0870.2006.00223.x.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , J. Wang, , and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, doi:10.1175/JCLI3619.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 7
PDF Downloads 24 24 4

Summer-to-Winter Sea-Ice Linkage between the Arctic Ocean and the Okhotsk Sea through Atmospheric Circulation

View More View Less
  • 1 Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
  • | 2 Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 3 Faculty of Science, Niigata University, Niigata, Japan
  • | 4 Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
  • | 5 Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada, and Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland, and Arctic Research Centre, Aarhus University, Aarhus, Denmark
© Get Permissions
Restricted access

Abstract

Contemporary climate science seeks to understand the rate and magnitude of a warming global climate and how it impacts regional variability and teleconnections. One of the key drivers of regional climate is the observed reduction in end of summer sea-ice extent over the Arctic. Here the authors show that interannual variations between the September Arctic sea-ice concentration, especially in the East Siberian Sea, and the maximum Okhotsk sea-ice extent in the following winter are positively correlated, which is not explained by the recent warming trend only. An increase of sea ice both in the East Siberian Sea and the Okhotsk Sea and corresponding atmospheric patterns, showing a seesaw between positive anomalies of sea level pressures over the Arctic Ocean and negative anomalies over the midlatitudes, are related to cold anomalies over the high-latitude Eurasian continent. The patterns of atmospheric circulation and air temperatures are similar to those of the annually integrated Arctic Oscillation (AO). The negative annual AO forms colder anomalies in autumn sea surface temperatures both over the East Siberian Sea and the Okhotsk Sea, which causes heavy sea-ice conditions in both seas through season-to-season persistence.

Corresponding author address: Masayo Ogi, Centre for Earth Observation Science, University of Manitoba, 530 Wallace Building, 125 Dysart Rd., Winnipeg MB R3T 2N2, Canada. E-mail: Masayo.Ogi@umanitoba.ca

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

Contemporary climate science seeks to understand the rate and magnitude of a warming global climate and how it impacts regional variability and teleconnections. One of the key drivers of regional climate is the observed reduction in end of summer sea-ice extent over the Arctic. Here the authors show that interannual variations between the September Arctic sea-ice concentration, especially in the East Siberian Sea, and the maximum Okhotsk sea-ice extent in the following winter are positively correlated, which is not explained by the recent warming trend only. An increase of sea ice both in the East Siberian Sea and the Okhotsk Sea and corresponding atmospheric patterns, showing a seesaw between positive anomalies of sea level pressures over the Arctic Ocean and negative anomalies over the midlatitudes, are related to cold anomalies over the high-latitude Eurasian continent. The patterns of atmospheric circulation and air temperatures are similar to those of the annually integrated Arctic Oscillation (AO). The negative annual AO forms colder anomalies in autumn sea surface temperatures both over the East Siberian Sea and the Okhotsk Sea, which causes heavy sea-ice conditions in both seas through season-to-season persistence.

Corresponding author address: Masayo Ogi, Centre for Earth Observation Science, University of Manitoba, 530 Wallace Building, 125 Dysart Rd., Winnipeg MB R3T 2N2, Canada. E-mail: Masayo.Ogi@umanitoba.ca

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save