• Almazroui, M., 2011: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res., 99, 400414, doi:10.1016/j.atmosres.2010.11.006.

    • Search Google Scholar
    • Export Citation
  • Almazroui, M., , M. Nazrul Islam, , H. Athar, , P. D. Jones, , and M. A. Rahman, 2012: Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol., 32, 953966, doi:10.1002/joc.3446.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and P. Liu, 2005: Response of the Asian summer monsoon to changes in El Niño properties. Quart. J. Roy. Meteor. Soc., 131, 805831, doi:10.1256/qj.04.08.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , K. Hamilton, , and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 10711092, doi:10.1175/JCLI4035.1.

    • Search Google Scholar
    • Export Citation
  • Bader, J., , and M. Latif, 2003: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30, 2169, doi:10.1029/2003GL018426.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , R. T. Sutton, , and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, doi:10.1029/2006GL025766.

    • Search Google Scholar
    • Export Citation
  • Ehsan, M. A., , I.-S. Kang, , M. Almazroui, , M. A. Abid, , and F. Kucharski, 2013: A quantitative assessment of changes in seasonal potential predictability for the twentieth century. Climate Dyn., 41, 26972709, doi:10.1007/s00382-013-1874-x.

    • Search Google Scholar
    • Export Citation
  • Feudale, L., , and F. Kucharski, 2013: A common mode of variability of African and Indian monsoon rainfall. Climate Dyn., 41, 243254, doi:10.1007/s00382-013-1827-4.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , T. N. Palmer, , and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures. Nature, 320, 602607, doi:10.1038/320602a0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , J. Shukla, , J. Kinter, , and M. J. Rodwell, 2002: The climate of the twentieth century project. CLIVAR Exchanges, No. 7, CLIVAR International Project Office, Southhampton, United Kingdom, 37–39.

  • Gershunov, A., , N. Schneider, , and T. Barnett, 2001: Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: Signal or noise? J. Climate, 14, 24862492, doi:10.1175/1520-0442(2001)014<2486:LFMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , R. Saravanan, , and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135162, doi:10.1007/BF00210626.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., , J. Lu, , and K. A. Peterson, 2004: Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett., 31, L02208, doi:10.1029/2003GL018542.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., , and K. H. Cook, 2008: Ocean warming and late-twentieth-century Sahel drought and recovery. J. Climate, 21, 37973814, doi:10.1175/2008JCLI2055.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ju, J., , and J. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 11331168, doi:10.1002/qj.49712152509.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , E. K. Jin, , and K.-H. An, 2006: Secular increase of seasonal predictability for the 20th century. Geophys. Res. Lett., 33, L02703, doi:10.1029/2005GL024499.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , J. Kug, , M.-J. Lim, , and D.-H. Choi, 2011: Impact of transient eddies on extratropical seasonal-mean predictability in DEMETER models. Climate Dyn., 37, 509519, doi:10.1007/s00382-010-0873-4.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , H.-H. No, , and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, doi:10.1175/JCLI-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., , H. Ding, , and M. Latif, 2013: Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys. Res. Lett., 40, 22782283, doi:10.1002/grl.50362.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., , K. Miyakoda, , and S. Yang, 2002: Recent change in the connection from the Asian monsoon to ENSO. J. Climate, 15, 12031215, doi:10.1175/1520-0442(2002)015<1203:RCITCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., , B. Rajagopalan, , and M. A. Cane, 1999: On the weakening of relationship between the Indian monsoon and ENSO. Science, 284, 21562159, doi:10.1126/science.284.5423.2156.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., , and B. N. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579595, doi:10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., , F. Molteni, , and A. Bracco, 2006: Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Climate Dyn., 26, 7991, doi:10.1007/s00382-005-0085-5.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., , A. Bracco, , J. H. Yoo, , and F. Molteni, 2007: Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Climate, 20, 42554266, doi:10.1175/JCLI4254.1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., , F. Molteni, , M. P. King, , R. Farneti, , I.-S. Kang, , and L. Feudale, 2013a: On the need of intermediate complexity general circulation models: A “SPEEDY” example. Bull. Amer. Meteor. Soc., 94, 2530, doi:10.1175/BAMS-D-11-00238.1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., , N. Zeng, , and E. Kalnay, 2013b: A further assessment of vegetation feedback on decadal Sahel rainfall variability. Climate Dyn., 40, 14531466, doi:10.1007/s00382-012-1397-x.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., , K. Rupa Kumar, , M. Rajeevan, , and A. K. Sahai, 2007: On the recent strengthening of the relationship between ENSO and northeast monsoon rainfall over South Asia. Climate Dyn., 28, 649660, doi:10.1007/s00382-006-0210-0.

    • Search Google Scholar
    • Export Citation
  • López-Parages, J., , and B. Rodríguez-Fonseca, 2012: Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys. Res. Lett., 39, L02704, doi:10.1029/2011GL050049.

    • Search Google Scholar
    • Export Citation
  • López-Parages, J., and et al. , 2013: Nonstationary interannual teleconnections modulated by multidecadal variability. Fis. Tierra, 25, 1139, doi:10.5209/rev_FITE.2013.v25.43433.

    • Search Google Scholar
    • Export Citation
  • Losada, T., , B. Rodríguez-Fonseca, , I. Polo, , S. Janicot, , S. Gervois, , F. Chauvin, , and P. Ruti, 2010: Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Climate Dyn., 35, 4552, doi:10.1007/s00382-009-0624-6.

    • Search Google Scholar
    • Export Citation
  • Losada, T., , B. Rodríguez-Fonseca, , E. Mohino, , J. Bader, , S. Janicot, , and C. R. Mechoso, 2012: Tropical SST and Sahel rainfall: A non-stationary relationship. Geophys. Res. Lett., 39, L12705, doi:10.1029/2012GL052423.

    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., , B. Rodríguez-Fonseca, , I. Polo, , and F. Kucharski, 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 31633178, doi:10.1007/s00382-014-2305-3.

    • Search Google Scholar
    • Export Citation
  • Mohino, E., , S. Janicot, , and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37, 419440, doi:10.1007/s00382-010-0867-2.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterizations. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191, doi:10.1007/s00382-002-0268-2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and et al. , 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1983: The relationship between the eastern Pacific sea surface temperature and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528, doi:10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., , I. Polo, , J. García-Serrano, , T. Losada, , E. Mohino, , C. R. Mechoso, , and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, doi:10.1029/2009GL040048.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., , C. K. Folland, , K. Maskell, , and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121, 669704, doi:10.1002/qj.49712152311.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , A. Becker, , P. Finger, , A. Meyer-Christoffer, , M. Ziese, , and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperature based on COADS data (1854–1997). J. Climate, 16, 14951510, doi:10.1175/1520-0442-16.10.1495.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, doi:10.1175/JCLI4283.1.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690, doi:10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., , P. M. Inness, , and J. M. Slingo, 2007: The effect of doubled CO2 and model basic state biases on the monsoon–ENSO system. I: Mean response and interannual variability. Quart. J. Roy. Meteor. Soc., 133, 11431157, doi:10.1002/qj.82.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , I.-S. Kang, , and J. Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818, doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and et al. , 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , A. M. Moore, , J. P. Loschnigg, , and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Yadav, R. K., , K. Rupa Kumar, , and M. Rajeevan, 2009: Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. J. Geophys. Res., 114, D12112, doi:10.1029/2008JD011318.

    • Search Google Scholar
    • Export Citation
  • Yadav, R. K., , J. H. Yoo, , F. Kucharski, , and M. A. Abid, 2010: Why is ENSO influencing northwest India winter precipitation in recent decades? J. Climate, 23, 19791993, doi:10.1175/2009JCLI3202.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , and J. Yoon, 2009: Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys. Res. Lett., 36, L17401, doi:10.1029/2009GL039699.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 99 8
PDF Downloads 47 47 5

Multidecadal Changes in the Relationship between ENSO and Wet-Season Precipitation in the Arabian Peninsula

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
  • | 2 Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
  • | 3 International Centre for Theoretical Physics, Trieste, Italy, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
  • | 4 Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
© Get Permissions
Restricted access

Abstract

Multidecadal variations in the relationship between El Niño–Southern Oscillation (ENSO) and the Arabian Peninsula rainfall are investigated using observed data for the last 60 years and various atmospheric general circulation model (AGCM) experiments. The wet season in the Arabian Peninsula from November to April was considered. The 6-month averaged Arabian rainfall was negatively correlated with ENSO for an earlier 30-yr period from 1950 to 1979 and positively correlated to ENSO for a more recent period from 1981 to 2010. The multidecadal variations can be attributed to the variations in Indian Ocean SST anomalies accompanied by ENSO. In the early 30-yr period, ENSO accompanied relatively large SST anomalies in the Indian Ocean, whereas in the recent 30-yr period it accompanied relatively small SST anomalies in the Indian Ocean. The atmospheric anomalies in the Arabian region during ENSO are combined responses to the Pacific and Indian Ocean SST anomalies, which offset each other during ENSO. The recent El Niño events accompanied negative 200-hPa geopotential height (GH) anomalies over the Arabian region, mainly forced by the Pacific SST anomalies, resulting in an increase of precipitation over the region. In contrast, in the early 30-yr period, Indian Ocean SST anomalies played a dominant role in the atmospheric responses over the Arabian region during ENSO, and the negative GH anomalies and more precipitation over the Arabian region were mainly forced by the negative SST anomalies over the Indian Ocean, which appeared during La Niña. These observed findings are confirmed by various AGCM experiments.

Corresponding author address: Prof. In-Sik Kang, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, South Korea. E-mail: kang@climate.snu.ac.kr

Abstract

Multidecadal variations in the relationship between El Niño–Southern Oscillation (ENSO) and the Arabian Peninsula rainfall are investigated using observed data for the last 60 years and various atmospheric general circulation model (AGCM) experiments. The wet season in the Arabian Peninsula from November to April was considered. The 6-month averaged Arabian rainfall was negatively correlated with ENSO for an earlier 30-yr period from 1950 to 1979 and positively correlated to ENSO for a more recent period from 1981 to 2010. The multidecadal variations can be attributed to the variations in Indian Ocean SST anomalies accompanied by ENSO. In the early 30-yr period, ENSO accompanied relatively large SST anomalies in the Indian Ocean, whereas in the recent 30-yr period it accompanied relatively small SST anomalies in the Indian Ocean. The atmospheric anomalies in the Arabian region during ENSO are combined responses to the Pacific and Indian Ocean SST anomalies, which offset each other during ENSO. The recent El Niño events accompanied negative 200-hPa geopotential height (GH) anomalies over the Arabian region, mainly forced by the Pacific SST anomalies, resulting in an increase of precipitation over the region. In contrast, in the early 30-yr period, Indian Ocean SST anomalies played a dominant role in the atmospheric responses over the Arabian region during ENSO, and the negative GH anomalies and more precipitation over the Arabian region were mainly forced by the negative SST anomalies over the Indian Ocean, which appeared during La Niña. These observed findings are confirmed by various AGCM experiments.

Corresponding author address: Prof. In-Sik Kang, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, South Korea. E-mail: kang@climate.snu.ac.kr
Save