• Anderson, C. J., , and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578599, doi:10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., , and K. W. Howard, 1988: Mesoscale convective complexes over the United States during 1985. Mon. Wea. Rev., 116, 685701, doi:10.1175/1520-0493(1988)116<0685:MCCOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., , and K. W. Howard, 1991: Mesoscale convective complexes over the United States during 1986 and 1987. Mon. Wea. Rev., 119, 15751589, doi:10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., , J. M. Skradski, , and R. D. Menard, 1984: Mesoscale convective systems: A satellite-data-based climatology. NOAA Tech. Memo. ERL ESG, Vol 8, 58 pp.

  • Blamey, R. C., , and C. J. C. Reason, 2012: Mesoscale convective complexes over southern Africa. J. Climate, 25, 753766, doi:10.1175/JCLI-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., , J. D. Tuttle, , D. A. Ahijevych, , and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , and C. Jones, 2001: A satellite method to identify structural properties of mesoscale convective systems based on the maximum spatial correlation tracking technique (MASCOTTE). J. Appl. Meteor., 40, 16831701, doi:10.1175/1520-0450(2001)040<1683:ASMTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , C. Jones, , and M. A. F. Silva Dias, 2002: Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. J. Geophys. Res., 107, 8042, doi:10.1029/2001JD000745.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , M.-S. Lin, , R. L. McAnelly, , and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765783, doi:10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , and J. C.-L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., , and T. L. Mote, 2010: A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol., 30, 418431, doi:10.1002/joc.1893.

    • Search Google Scholar
    • Export Citation
  • Fei, J. F., , R. S. Wu, , X. G. Huang, , Y. Wang, , and X. P. Cheng, 2011: Development of an integrated vertical-slantwise convective parameterization scheme and its associated numerical experiments. Acta Meteor. Sin., 25, 405418, doi:10.1007/s13351-011-0402-3.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., , D. Barriopedro, , E. Hernández, , D. Paredes, , J. F. Correoso, , and L. Prieto, 2005a: The 2001 mesoscale convective systems over Iberia and the Balearic Islands. Meteor. Atmos. Phys., 90, 225243, doi:10.1007/s00703-005-0114-2.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., , E. Hernández, , D. Paredes, , D. Barriopedro, , J. F. Correoso, , and L. Prieto, 2005b: A MASCOTTE-based characterization of MCSs over Spain, 2000–2002. Atmos. Res., 73, 261282, doi:10.1016/j.atmosres.2004.11.003.

    • Search Google Scholar
    • Export Citation
  • Ha, Y., , Z. Zhong, , X. Yang, , and Y. Sun, 2013: Different Pacific Ocean warming decaying types and northwest Pacific tropical cyclone activity. J. Climate, 26, 89798994, doi:10.1175/JCLI-D-13-00097.1.

    • Search Google Scholar
    • Export Citation
  • Ha, Y., , Z. Zhong, , Y. Sun, , W. Lu, 2014: Decadal change of South China Sea tropical cyclone activity in mid-1990s and its possible linkage with intraseasonal variability. J. Geophys. Res. Atmos.,119, 5331–5344, doi:10.1002/2013JD021286.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 535 pp.

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, doi:10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., , and M. Fan, 2002: Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer (in Chinese). Chin. J. Atmos. Sci., 26, 263270.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., , W. R. Cotton, , and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 24282449, doi:10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , S. L. Aves, , and P. E. Ciesielski, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131148, doi:10.1175/MWR-2843.1.

    • Search Google Scholar
    • Export Citation
  • Kane, R. J., , C. R. Chelius, , and J. M. Fritsch, 1987: Precipitation characteristics of mesoscale convective weather systems. J. Climate Appl. Meteor., 26, 13451357, doi:10.1175/1520-0450(1987)026<1345:PCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., , and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, doi:10.1002/qj.49712353807.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., , and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 27562776, doi:10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-N., and et al. , 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81, 12611270, doi:10.1175/1520-0477(2000)081<1261:AROTFO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., , B. Wang, , and D. Wang, 2012: The characteristics of mesoscale convective systems (MCSs) over East Asia in warm seasons. Atmos. Oceanic Sci. Lett., 5, 102107.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , Q. Wang, , X. Zheng, , W. Guo, , and W. Wang, 1989: The study of the mesoscale convective complex (MCC) over the southwest and south of China (in Chinese). Chin. J. Atmos. Sci., 13, 417422.

    • Search Google Scholar
    • Export Citation
  • Liu, C. T., , and E. J. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453466, doi:10.1029/2012JD018409.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , R. Zhang, , W. Qian, , Z. Luo, , and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 21642177, doi:10.1175/2010JCLI4032.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., , X. Wang, , and Z. Tao, 1997: Geographic distribution and life cycle of mesoscale convective system in China and its vicinity (in Chinese). Prog. Nat. Sci., 7, 701706.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., , J. Fei, , X. Huang, , and X. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120140, doi:10.1175/JAS-D-14-0199.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , W. B. Rossow, , R. L. Guedes, , and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., , D. M. Rodgers, , and K. W. Howard, 1982: Mesoscale convective complexes over the United States during 1981—Annual summary. Mon. Wea. Rev., 110, 15011514, doi:10.1175/1520-0493(1982)110<1501:MCCOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., , and W. R. Cotton, 1989: The precipitation life cycle of mesoscale convective complexes. Mon. Wea. Rev., 117, 784808, doi:10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , R. A. Houze Jr., , A. Kumar, , and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , D. Yan, , and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, doi:10.1175/MWR-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Miller, D., , and J. M. Fritsch, 1991: Mesoscale convective complexes in the western Pacific region. Mon. Wea. Rev., 119, 29782992, doi:10.1175/1520-0493(1991)119<2978:MCCITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, doi:10.1002/qj.49709841607.

    • Search Google Scholar
    • Export Citation
  • Morel, C., , and S. Senesi, 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971, doi:10.1256/003590002320603485.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Orlanski, L. A., 1975: A rational subdivision of scales for atmospheric process. Bull. Amer. Meteor. Soc., 56, 527530.

  • Parker, M. D., , and R. H. Johnson, 2000: Organizational modes of mid-latitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qie, X., , X. Wu, , T. Yuan, , J. Bian, , and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, doi:10.1175/JCLI-D-14-00076.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, D. M., , K. W. Howard, , and E. C. Johnston, 1983: Mesoscale convective complexes over the United States during 1982. Mon. Wea. Rev., 111, 23632369, doi:10.1175/1520-0493(1983)111<2363:MCCOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodgers, D. M., , M. J. Magnano, , and J. H. Arns, 1985: Mesoscale convective complexes over the United States during 1983. Mon. Wea. Rev., 113, 888901, doi:10.1175/1520-0493(1985)113<0888:MCCOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , S. Medina, , and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, Z., , H. Wang, , and Y. Wang, 1998: A survey of meso-α-scale convective system over China during 1995 (in Chinese). Acta Meteor. Sin., 56, 166177.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., , and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92 (D8), 95919613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, doi:10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , and C. Cui, 2011: A number of advances of the research on heavy rain mesoscale convective systems (in Chinese). Torrential Rain Disasters, 30 (2), 97106.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , X. Qie, , and T. Yuan, 2013: Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci. China Earth Sci., 56, 843854, doi:10.1007/s11430-012-4551-8.

    • Search Google Scholar
    • Export Citation
  • Xiang, X., , and J. Jiang, 1995: Mesoscale convective complexes over the South China mainland (in Chinese). Quart. J. Appl. Meteor., 6, 917.

    • Search Google Scholar
    • Export Citation
  • Xie, B., , Q. Zhang, , and Y. Wang, 2010: Observed characteristics of hail size in four regions in China during 1980–2005. J. Climate, 23, 49734982, doi:10.1175/2010JCLI3600.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 15771592, doi:10.1175/MWR-D-12-00177.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448465, doi:10.1175/2010JCLI3719.1.

    • Search Google Scholar
    • Export Citation
  • Yang, B., , and Z. Tao, 2005: The analysis of local features of MCC on southeast Tibetan Plateau (in Chinese). Acta Meteor. Sin., 63, 236242.

    • Search Google Scholar
    • Export Citation
  • Yu, R., , T. Zhou, , A. Xiong, , Y. Zhu, , and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    • Search Google Scholar
    • Export Citation
  • Zeng, B., , Y. Shen, , and T. Xiao, 2013: Statistical analysis of MCS in summer in central-eastern China (in Chinese). Meteor. Mon., 39 (2), 180185.

    • Search Google Scholar
    • Export Citation
  • Zheng, L. L., , J. H. Sun, , X. L. Zhang, , and C. H. Liu, 2013: Organization modes of mesoscale convective systems over central east China. Wea. Forecasting, 28, 10811098, doi:10.1175/WAF-D-12-00088.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., , P. Zhu, , M. Chen, , J. Bai, , L. Wang, , Y. Li, , X. Wei, , and Z. Tao, 2004: Meso-α-scale convective systems over Yellow Sea region during summers of 1993–1996 (in Chinese). Acta Sci. Nat. Univ. Pekinensis, 40, 6672.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., , J. Chen, , and P. Zhu, 2008: The characteristic of distribution and spatiotemporal variations of deep convection over China and its vicinity during summer (in Chinese). Chin. Sci. Bull., 53, 471481.

    • Search Google Scholar
    • Export Citation
  • Zhuo, H., , P. Zhao, , C. Li, , and Z. Pu, 2012: Analysis of climatic characteristics of mesoscale convective system over the lower reaches of the Yellow River during summer (in Chinese). Chin. J. Atmos. Sci., 36, 11121122.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdraughts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 17
PDF Downloads 122 122 20

Characteristics of Mesoscale Convective Systems over China and Its Vicinity Using Geostationary Satellite FY2

View More View Less
  • 1 College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China
  • | 2 Department of Geography, University of California, Santa Barbara, Santa Barbara, California
  • | 3 College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

This study investigates mesoscale convective systems (MCSs) over China and its vicinity during the boreal warm season (May–August) from 2005 to 2012 based on data from the geostationary satellite Fengyun 2 (FY2) series. The authors classified and analyzed the quasi-circular and elongated MCSs on both large and small scales, including mesoscale convective complexes (MCCs), persistent elongated convective systems (PECSs), meso-β circular convective systems (MβCCSs), meso-β elongated convective system (MβECSs), and two additional types named small meso-β circular convective systems (SMβCCSs) and small meso-β elongated convective systems (SMβECSs). Results show that nearly 80% of the 8696 MCSs identified in this study fall into the elongated categories. Overall, MCSs occur mainly at three zonal bands with average latitudes around 20°, 30°, and 50°N. The frequency of MCSs occurrences is maximized at the zonal band around 20°N and decreases with increase in latitude. During the eight warm seasons, the period of peak systems occurrences is in July, followed decreasingly by June, August, and May. Meanwhile, from May to August three kinds of monthly variations are observed, which are clear northward migration, rapid increase, and persistent high frequency of MCS occurrences. Compared to MCSs in the United States, the four types of MCSs (MCCs, PECSs, MβCCSs, and MβECSs) are relatively smaller both in size and eccentricity but exhibit nearly equal life spans. Moreover, MCSs in both countries share similar positive correlations between their duration and maximum extent. Additionally, the diurnal cycles of MCSs in both countries are similar (local time) regarding the three stages of initiation, maturation, and termination.

Corresponding author address: Dr. Jianfang Fei, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Road, Nanjing 211101, China. E-mail: feijf@sina.com

Abstract

This study investigates mesoscale convective systems (MCSs) over China and its vicinity during the boreal warm season (May–August) from 2005 to 2012 based on data from the geostationary satellite Fengyun 2 (FY2) series. The authors classified and analyzed the quasi-circular and elongated MCSs on both large and small scales, including mesoscale convective complexes (MCCs), persistent elongated convective systems (PECSs), meso-β circular convective systems (MβCCSs), meso-β elongated convective system (MβECSs), and two additional types named small meso-β circular convective systems (SMβCCSs) and small meso-β elongated convective systems (SMβECSs). Results show that nearly 80% of the 8696 MCSs identified in this study fall into the elongated categories. Overall, MCSs occur mainly at three zonal bands with average latitudes around 20°, 30°, and 50°N. The frequency of MCSs occurrences is maximized at the zonal band around 20°N and decreases with increase in latitude. During the eight warm seasons, the period of peak systems occurrences is in July, followed decreasingly by June, August, and May. Meanwhile, from May to August three kinds of monthly variations are observed, which are clear northward migration, rapid increase, and persistent high frequency of MCS occurrences. Compared to MCSs in the United States, the four types of MCSs (MCCs, PECSs, MβCCSs, and MβECSs) are relatively smaller both in size and eccentricity but exhibit nearly equal life spans. Moreover, MCSs in both countries share similar positive correlations between their duration and maximum extent. Additionally, the diurnal cycles of MCSs in both countries are similar (local time) regarding the three stages of initiation, maturation, and termination.

Corresponding author address: Dr. Jianfang Fei, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Road, Nanjing 211101, China. E-mail: feijf@sina.com
Save