• Annamalai, H., , and J. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian Summer Monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and K. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 27262748, doi:10.1175/JAS3504.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , and Z. Kuang, 2010: Mechanisms of poleward propagating, intraseasonal convective anomalies in cloud system-resolving models. J. Atmos. Sci., 67, 36733691, doi:10.1175/2010JAS3515.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., , C. Stan, , and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 19731992, doi:10.1175/JCLI-D-12-00191.1.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., , and B. Wang, 2005: Mechanism of the northward-propagating intraseasonal oscillation: Insights from a zonally symmetric model. J. Climate, 18, 952972, doi:10.1175/JCLI3306.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., , A. J. Majda, , and O. M. Pauluis, 2004: Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sci., 2, 591626, doi:10.4310/CMS.2004.v2.n4.a3.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gyoswami, B., , and J. Shukla, 1984: Quasi-periodic oscillations in a symmetric general circulation model. J. Atmos. Sci., 41, 2037, doi:10.1175/1520-0469(1984)041<0020:QPOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., , C.-H. Weng, , and C.-H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17, 727743, doi:10.1175/1520-0442(2004)017<0727:CCBTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-c., , and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., , J.-L. Lin, , W. Wang, , D. Kim, , T. Shinoda, , and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 37773795, doi:10.1175/JCLI3516.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , T. Li, , and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2015: Vertical structure and diabatic processes of the Madden–Julian Oscillation: Exploring key model physics in cimate simulations. J. Geophys. Res., doi:10.1002/2014JD022375, in press.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. Hnilo, , M. Fiorino, , and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , and I. M. Held, 1986: Linear and nonlinear diagnostic models of stationary eddies in the upper troposphere during northern summer. J. Atmos. Sci., 43, 30453057, doi:10.1175/1520-0469(1986)043<3045:LANDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , D. Kim, , and J.-S. Kug, 2010: Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport. Geophys. Res. Lett., 37, L24804, doi:10.1029/2010GL045072.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , F. Liu, , M.-S. Ahn, , Y.-M. Yang, , and B. Wang, 2013: The role of SST structure in convectively coupled Kelvin–Rossby waves and its implications for MJO formation. J. Climate, 26, 59155930, doi:10.1175/JCLI-D-12-00303.1.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., , and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, doi:10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400, doi:10.1175/JAS3833.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , B. Wang, , and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian Oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., , and C. Zhou, 2009: Planetary scale selection of the Madden–Julian oscillation. J. Atmos. Sci., 66, 24292443, doi:10.1175/2009JAS2968.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , and B. Wang, 2012a: A frictional skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 69, 27492758, doi:10.1175/JAS-D-12-020.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , and B. Wang, 2012b: A model for the interaction between 2-day waves and moist Kelvin waves. J. Atmos. Sci., 69, 611625, doi:10.1175/JAS-D-11-0116.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , and B. Wang, 2012c: A conceptual model for self-sustained active-break Indian summer monsoon. Geophys. Res. Lett., 39, L20814, doi:10.1029/2012GL053663.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , and B. Wang, 2013: Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden–Julian oscillation: A theoretical model study. Climate Dyn., 40, 213224, doi:10.1007/s00382-011-1281-0.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , G. Huang, , and Y. Mi, 2015: Role of SST meridional structure in coupling the Kelvin and Rossby waves of the intraseasonal oscillation. Theor. Appl. Climatol., doi:10.1007/s00704-014-1266-0, in press.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1986: Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 31383158, doi:10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101, 47364741, doi:10.1073/pnas.0401034101.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Miyakawa, T., , Y. N. Takayabu, , T. Nasuno, , H. Miura, , M. Satoh, , and M. W. Moncrieff, 2012: Convective momentum transport by rainbands within a Madden–Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. J. Atmos. Sci., 69, 13171338, doi:10.1175/JAS-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., , and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, doi:10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mori, M., , and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, doi:10.2151/jmsj.86.213.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1984: Analysis of the deep convective activity over the Western Pacific and Southeast Asia. II: Seasonal and intraseasonal variations during Northern Summer. J. Meteor. Soc. Japan, 62, 88108.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., , and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian Oscillation during Northern Hemisphere winter. J. Climate, 16, 929950, doi:10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., , X. Jiang, , D. Waliser, , M. W. Moncrieff, , and R. H. Johnson, 2015: Convective momentum transport associated with the Madden–Julian oscillation based on a reanalysis dataset. J. Climate, in press.

  • Salby, M. L., , and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51, 22072224, doi:10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 31583160, doi:10.1029/JC081i018p03158.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 219–251.

  • Sobel, A. H., , and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , and H. Annamalai, 2008: Coupled model simulations of boreal summer intraseasonal (30–50 day) variability. Part 1: Systematic errors and caution on use of metrics. Climate Dyn., 31, 345372, doi:10.1007/s00382-008-0367-9.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , B. H. Lambrigtsen, , Y. L. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., , and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871, doi:10.1175/1520-0469(2002)059<1857:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., , and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549, doi:10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, doi:10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and Y. Xue, 1992: Behavior of a moist Kelvin wave packet with nonlinear heating. J. Atmos. Sci., 49, 549559, doi:10.1175/1520-0469(1992)049<0549:BOAMKW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and T. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260284, doi:10.1175/1520-0469(1993)050<0260:ASTAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, doi:10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and F. Liu, 2011: A model for scale interaction in the Madden–Julian oscillation. J. Atmos. Sci., 68, 25242536, doi:10.1175/2011JAS3660.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , P. J. Webster, , and H. Teng, 2005: Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites. Geophys. Res. Lett., 32, 4704, doi:10.1029/2004GL020996.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, doi:10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377389, doi:10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and et al. , 2012: A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance (special issue on recent development on climate models and future climate projections). J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., , and M. Dong, 2004: Seasonality in the Madden–Julian Oscillation. J. Climate, 17, 31693180, doi:10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , and I.-S. Kang, 2013: Influence of Convective Momentum Transport on Mixed Rossby–Gravity Waves: A Contribution to Tropical 2-Day Waves. J. Atmos. Sci., 70, 24672475, doi:10.1175/JAS-D-12-0300.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , R. B. Neale, , M. Jochum, , and R. Murtugudde, 2012: Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136, doi:10.1175/2011JCLI4059.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., , and A. J. Miller, 2005: The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J. Climate, 18, 143159, doi:10.1175/JCLI3251.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 5
PDF Downloads 14 14 4

Roles of Barotropic Convective Momentum Transport in the Intraseasonal Oscillation

View More View Less
  • 1 Earth System Modelling Center and Climate Dynamics Research Center, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 3 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

Both observational data analysis and model simulations suggest that convective momentum transport (CMT) by cumulus convection may play a significant role in the intraseasonal oscillations (ISO) by redistributing atmospheric momentum vertically through fast convective mixing process. The authors present a simple theoretical model for the ISO by parameterizing the cumulus momentum transport process in which the CMT tends to produce barotropic wind anomalies that will affect the frictional planetary boundary layer (PBL). In the model with equatorial easterly vertical wind shear (VWS), it is found that the barotropic CMT tends to select most unstable planetary-scale waves because CMT suppresses the equatorial Ekman pumping of short waves, which reduces the shortwave instability from the PBL moisture convergence and accelerates the shortwave propagation. The model with subtropical easterly VWS has behavior that can be qualitatively different from the model with equatorial easterly VWS and has robust northward propagation. The basic mechanism of this northward propagation is that the CMT accelerates the barotropic cyclonic wind to the north of ISO, which will enhance the precipitation by PBL Ekman pumping and favor the northward propagation. The simulated northward propagation is sensitive to the strength and location of the seasonal-mean easterly VWS. These results suggest that accurate simulation of the climatological-mean state is critical for reproducing the realistic ISO in general circulation models.

Earth System Modeling Center Contribution Number 0042.

Corresponding author address: Dr. Fei Liu, Earth System Modeling Center, Nanjing University of Information Science and Technology, Ningliu Lu, Nanjing 410042, China. E-mail: liuf@nuist.edu.cn

Abstract

Both observational data analysis and model simulations suggest that convective momentum transport (CMT) by cumulus convection may play a significant role in the intraseasonal oscillations (ISO) by redistributing atmospheric momentum vertically through fast convective mixing process. The authors present a simple theoretical model for the ISO by parameterizing the cumulus momentum transport process in which the CMT tends to produce barotropic wind anomalies that will affect the frictional planetary boundary layer (PBL). In the model with equatorial easterly vertical wind shear (VWS), it is found that the barotropic CMT tends to select most unstable planetary-scale waves because CMT suppresses the equatorial Ekman pumping of short waves, which reduces the shortwave instability from the PBL moisture convergence and accelerates the shortwave propagation. The model with subtropical easterly VWS has behavior that can be qualitatively different from the model with equatorial easterly VWS and has robust northward propagation. The basic mechanism of this northward propagation is that the CMT accelerates the barotropic cyclonic wind to the north of ISO, which will enhance the precipitation by PBL Ekman pumping and favor the northward propagation. The simulated northward propagation is sensitive to the strength and location of the seasonal-mean easterly VWS. These results suggest that accurate simulation of the climatological-mean state is critical for reproducing the realistic ISO in general circulation models.

Earth System Modeling Center Contribution Number 0042.

Corresponding author address: Dr. Fei Liu, Earth System Modeling Center, Nanjing University of Information Science and Technology, Ningliu Lu, Nanjing 410042, China. E-mail: liuf@nuist.edu.cn
Save