• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Elsevier, 489 pp.

  • Angell, J. K., , and M. Free, 2009: Ground-based observations of the slowdown in ozone decline and onset of ozone increase. J. Geophys. Res., 114, D07303, doi:10.1029/2008JD010860.

    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., , A. K. Weiss, , and J. Staehelin, 2000: North Atlantic Oscillation modulates total ozone winter trends. Geophys. Res. Lett., 27, 11311134, doi:10.1029/1999GL010854.

    • Search Google Scholar
    • Export Citation
  • Bell, C. J., , L. J. Gray, , A. J. Charlton-Perez, , M. M. Joshi, , and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, doi:10.1175/2009JCLI2717.1.

    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., , R. D. McPeters, , L. E. Flynn, , S. Taylor, , N. A. Kramarova, , S. Frith, , B. Fisher, , and M. DeLand, 2013: Solar backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech., 6, 25332548, doi:10.5194/amt-6-2533-2013.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., , H. Shiona, , and H. Eskes, 2005: Indicators of Antarctic ozone depletion. Atmos. Chem. Phys., 5, 26032615, doi:10.5194/acp-5-2603-2005.

    • Search Google Scholar
    • Export Citation
  • Bojkov, R. D., 1987: The 1983 and 1985 anomalies in ozone distribution in perspective. Mon. Wea. Rev.,115, 2187–2201, doi:10.1175/1520-0493(1987)115<2187:TAAIOD>2.0.CO;2.

  • Cagnazzo, C., , and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, doi:10.1175/2008JCLI2549.1.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and et al. , 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys., 9, 89358948, doi:10.5194/acp-9-8935-2009.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., , E. Manzini, , P. G. Fogli, , M. Vichi, , and P. Davini, 2013: Role of stratospheric dynamics in the ozone–carbon connection in the Southern Hemisphere. Climate Dyn., 41, 30393054, doi:10.1007/s00382-013-1745-5.

    • Search Google Scholar
    • Export Citation
  • Cai, W., 2006: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett., 33, L03712, doi:10.1029/2005GL024911.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , R. R. Garcia, , W. J. Randel, , and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, doi:10.1175/2010JAS3433.1.

    • Search Google Scholar
    • Export Citation
  • Chandra, S., , J. R. Ziemke, , W. Min, , and W. G. Read, 1998: Effects of 1997–1998 El Niño on tropospheric ozone and water vapor. Geophys. Res. Lett., 25, 38673870, doi:10.1029/98GL02695.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2002: A North Pacific short-wave train during the extreme phases of ENSO. J. Climate, 15, 23592376, doi:10.1175/1520-0442(2002)015<2359:ANPSWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dhomse, S., , M. Weber, , I. Wohltmann, , M. Rex, , and J. P. Burrows, 2006: On the possible causes of recent increases in Northern Hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003. Atmos. Chem. Phys., 6, 11651180, doi:10.5194/acp-6-1165-2006.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and et al. , 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. de F., , and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res.,102, 10 841–10 855, doi:10.1029/96JD03510.

  • Frith, S. M., , N. A. Kramarova, , R. S. Stolarski, , R. D. McPeters, , P. K. Bhartia, , and G. J. Labow, 2014: Recent changes in total column ozone based on the SBUV version 8.6 merged ozone data set. J. Geophys. Res., 119, 9735–9751, doi:10.1002/2014JD021889.

    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., , and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12, 16191629, doi:10.1175/1520-0442(1999)012<1619:IVOTOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , D. R. Marsh, , D. E. Kinnison, , B. A. Boville, , and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., , N. Calvo, , R. R. Garcia, , and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2007: Effects of the El-Niño Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481.

    • Search Google Scholar
    • Export Citation
  • Hadjinicolaou, P., , A. Jrrar, , J. A. Pyle, , and L. Bishop, 2002: The dynamically driven long-term trend in stratospheric ozone over northern middle latitudes. Quart. J. Roy. Meteor. Soc., 128, 13931412, doi:10.1002/qj.200212858301.

    • Search Google Scholar
    • Export Citation
  • Harris, N. R. P., and et al. , 2008: Ozone trends at northern mid- and high latitudes—A European perspective. Ann. Geophys., 26, 12071220, doi:10.5194/angeo-26-1207-2008.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , M. E. McIntyre, , T. G. Shepherd, , C. J. Marks, , and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the layer 330–2000 K. J. Atmos. Sci., 64, 19221940, doi:10.1175/JAS3927.1.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , and M. J. Rogal, 2010a: ENSO influences on Southern Hemisphere column ozone during the winter to spring transition. J. Geophys. Res., 115, D20104, doi:10.1029/2009JD012844.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , and M. J. Rogal, 2010b: Influence of tropical convection on the Southern Hemisphere ozone maximum during the winter to spring transition. J. Geophys. Res., 115, D14118, doi:10.1029/2009JD012883.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , J. A. Pyle, , and J. A. Curry, 2003: Encyclopedia of Atmospheric Sciences. Academic, 1404 pp.

  • Hood, L. L., , and B. E. Soukharev, 2005: Interannual variations of total ozone at northern midlatitudes correlated with stratospheric EP flux and potential vorticity. J. Atmos. Sci., 62, 37243740, doi:10.1175/JAS3559.1.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., , B. E. Soukharev, , and J. P. McCormack, 2010: Decadal variability of the tropical stratosphere: Secondary influence of the El Niño–Southern Oscillation. J. Geophys. Res., 115, D11113, doi:10.1029/2009JD012291.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., , and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Isotta, F., , O. Martius, , M. Sprenger, , and C. Schwierz, 2008: Long-term trends of synoptic-scale breaking Rossby waves in the Northern Hemisphere between 1958 and 2001. Int. J. Climatol., 28, 15511562, doi:10.1002/joc.1647.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , L. M. Polvani, , J. C. Fyfe, , and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, doi:10.1126/science.1202131.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., 1997: Principal modes of the total ozone on the Southern Oscillation timescale and related temperature variations. J. Geophys. Res., 102, 25 79725 806, doi:10.1029/97JD02362.

    • Search Google Scholar
    • Export Citation
  • Kerr, J. B., , and C. T. McElroy, 1993: Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262, 10321034, doi:10.1126/science.262.5136.1032.

    • Search Google Scholar
    • Export Citation
  • Koumoutsaris, S., , I. Bey, , S. Generoso, , and V. Thouret, 2008: Influence of El Niño–Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes. J. Geophys. Res., 113, D19301, doi:10.1029/2007JD009753.

    • Search Google Scholar
    • Export Citation
  • Krzyścin, J. W., 2012: Onset of the total ozone increase based on statistical analyses of global ground-based data for the period 1964-2008. Int. J. Climatol., 32, 240246, doi:10.1002/joc.2264.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Mäder, J. A., , J. Staehelin, , D. Brunner, , W. A. Stahel, , I. Wohltmann, , and T. Peter, 2007: Statistical modeling of total ozone: Selection of appropriate explanatory variables. J. Geophys. Res., 112, D11108, doi:10.1029/2006JD007694.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and et al. , 2011: Jet characterization in the upper troposphere/lower stratosphere (UTLS): Applications to climatology and transport studies. Atmos. Chem. Phys., 11, 61156137, doi:10.5194/acp-11-6115-2011.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., , P. K. Bhartia, , D. Haffner, , G. J. Labow, , and L. Flynn, 2013: The version 8.6 SBUV ozone data record: An overview. J. Geophys. Res., 118, 8032–8039, doi:10.1002/jgrd.50597.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., and et al. , 2002: A cohesive total ozone data set from the SBUV(/2) satellite system. J. Geophys. Res., 107, 4701, doi:10.1029/2001JD000853.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., , and A. Karpechko, 2005: The mean meridional circulation and midlatitude ozone buildup. Atmos. Chem. Phys., 5, 31593172, doi:10.5194/acp-5-3159-2005.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., , J. R. Ziemke, , A. R. Douglass, , D. W. Waugh, , C. Lang, , J. M. Rodriguez, , and J. E. Nielsen, 2011: The response of tropical tropospheric ozone to ENSO. Geophys. Res. Lett., 38, L13706, doi:10.1029/2011GL047865.

    • Search Google Scholar
    • Export Citation
  • Ossó, A., , Y. Sola, , J. Bech, , and J. Lorente, 2011: Evidence for the influence of the North Atlantic Oscillation on the total ozone column at northern low latitudes and midlatitudes during winter and summer seasons. J. Geophys. Res., 116, D24122, doi:10.1029/2011JD016539.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99, 54335447, doi:10.1029/93JD03454.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , N. Calvo, , and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.

    • Search Google Scholar
    • Export Citation
  • Rieder, H. E., and et al. , 2013: On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes. Atmos. Chem. Phys., 13, 165179, doi:10.5194/acp-13-165-2013.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and P. F. Callaghan, 1993: Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98, 27152727, doi:10.1029/92JD01814.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, doi:10.1175/JCLI3391.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , R. R. Garcia, , and F. Stordal, 1985: Transport processes and ozone perturbations. J. Geophys. Res., 90, 12 98112 989, doi:10.1029/JD090iD07p12981.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and et al. , 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., , B. Hassler, , H. Claude, , P. Winkler, , and R. S. Stolarski, 2003: Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys., 3, 14211438, doi:10.5194/acp-3-1421-2003.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., , and J. F. Royer, 1995: Low-frequency variability of total ozone mapping spectrometer and general-circulation model total ozone stationary waves associated with the El-Niño Southern Oscillation for the period 1979–1988. J. Geophys. Res., 100, 73377346, doi:10.1029/94JD03192.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., , A. R. Douglass, , S. Steenrod, , and S. Pawson, 2006: Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci., 63, 10281041, doi:10.1175/JAS3650.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Tian, W., , M. Chipperfield, , and Q. Huang, 2008: Effects of the Tibetan Plateau on total column ozone distribution. Tellus, 60B, 622635, doi:10.1111/j.1600-0889.2008.00338.x.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N.-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., , and H. Yang, 1988: Dynamic variability of column ozone. J. Geophys. Res., 93, 11 12311 128, doi:10.1029/JD093iD09p11123.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., , and K. Labitzke, 1987: The Southern Oscillation, Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Wea. Rev., 115, 357369, doi:10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Varotsos, C., , C. Cartalis, , A. Vlamakis, , C. Tzanis, , and I. Keramitsoglou, 2004: The long-term coupling between column ozone and tropopause properties. J. Climate, 17, 38433854, doi:10.1175/1520-0442(2004)017<3843:TLCBCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev.,109, 784–812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , S. Pawson, , B. Tian, , M. Liang, , R. Shia, , Y. L. Yung, , and X. Jiang, 2011: El Niño–Southern Oscillation in tropical and midlatitude column ozone. J. Atmos. Sci., 68, 19111921, doi:10.1175/JAS-D-11-045.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Scientific assessment of ozone depletion: 2010. World Meteorological Organization/United Nations Environment Programme Rep. 52, 516 pp.

  • Xie, F., , W. Tian, , J. Austin, , J. Li, , H. Tian, , J. Shu, , and C. Chen, 2011: The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Phys. Discuss., 11, 41414166, doi:10.5194/acpd-11-4141-2011.

    • Search Google Scholar
    • Export Citation
  • Xie, F., , J. Li, , W. Tian, , J. Feng, , and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12, 52595273, doi:10.5194/acp-12-5259-2012.

    • Search Google Scholar
    • Export Citation
  • Xie, F., , J. Li, , W. Tian, , J. Zhang, , and S. Cheng, 2014: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett., 9, 064020, doi:10.1088/1748-9326/9/6/064020.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, G., , and J. A. Pyle, 2005: Influence of El Niño Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget. Geophys. Res. Lett., 32, L01814, doi:10.1029/2004GL021353.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , W. Tian, , F. Xie, , H. Tian, , J. Luo, , J. Zhang, , W. Liu, , and S. Dhomse, 2014: Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring. Tellus, 66B, 23 415, doi:10.3402/tellusb.v66.23415.

    • Search Google Scholar
    • Export Citation
  • Zubiaurre, I., , and N. Calvo, 2012: The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117, D04104, doi:10.1029/2011JD016690.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 11
PDF Downloads 62 62 8

The Influence of ENSO on Northern Midlatitude Ozone during the Winter to Spring Transition

View More View Less
  • 1 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
  • | 2 College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China
  • | 3 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
© Get Permissions
Restricted access

Abstract

The influence of El Niño–Southern Oscillation (ENSO) on northern midlatitude ozone during the period January–March (JFM) is investigated using various observations and a chemistry–climate model. The analysis reveals that, during El Niño events, there are noticeable anomalously high total ozone column (TOC) values over the North Pacific, the southern United States, northeastern Africa, and East Asia but anomalously low values in central Europe and over the North Atlantic. La Niña events have almost the opposite effects on TOC anomalies. The longitudinal dependence of midlatitude ozone anomalies associated with ENSO events during the period JFM is found to be related to planetary waves. Planetary waves excited by tropical convection propagate into the middle latitudes and give rise to longwave trains (Pacific–North American pattern) and shortwave trains along the North African–Asian jet. These wave trains affect ozone in the upper troposphere and lower stratosphere (UTLS) by modulating the midlatitude tropopause height and cause TOC anomalies by changing the vertical distributions of ozone. In addition, synoptic-scale Rossby wave breaking increases on the poleward flanks of the enhanced westerly jet during El Niño events, leading to a stronger eddy-driven meridional circulation in the UTLS and hence causing TOC increases over the North Pacific, the southern United States, northeastern Africa, and East Asia and vice versa for La Niña events. It is also found that the contribution of changes in Brewer–Dobson circulation due to anomalous planetary wave dissipation in the stratosphere during ENSO events to TOC changes in the middle latitudes for the period JFM is small, not more than 1 Dobson unit (DU) per month.

Corresponding author address: Wenshou Tian, College of Atmospheric Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China. E-mail: wstian@lzu.edu.cn

Abstract

The influence of El Niño–Southern Oscillation (ENSO) on northern midlatitude ozone during the period January–March (JFM) is investigated using various observations and a chemistry–climate model. The analysis reveals that, during El Niño events, there are noticeable anomalously high total ozone column (TOC) values over the North Pacific, the southern United States, northeastern Africa, and East Asia but anomalously low values in central Europe and over the North Atlantic. La Niña events have almost the opposite effects on TOC anomalies. The longitudinal dependence of midlatitude ozone anomalies associated with ENSO events during the period JFM is found to be related to planetary waves. Planetary waves excited by tropical convection propagate into the middle latitudes and give rise to longwave trains (Pacific–North American pattern) and shortwave trains along the North African–Asian jet. These wave trains affect ozone in the upper troposphere and lower stratosphere (UTLS) by modulating the midlatitude tropopause height and cause TOC anomalies by changing the vertical distributions of ozone. In addition, synoptic-scale Rossby wave breaking increases on the poleward flanks of the enhanced westerly jet during El Niño events, leading to a stronger eddy-driven meridional circulation in the UTLS and hence causing TOC increases over the North Pacific, the southern United States, northeastern Africa, and East Asia and vice versa for La Niña events. It is also found that the contribution of changes in Brewer–Dobson circulation due to anomalous planetary wave dissipation in the stratosphere during ENSO events to TOC changes in the middle latitudes for the period JFM is small, not more than 1 Dobson unit (DU) per month.

Corresponding author address: Wenshou Tian, College of Atmospheric Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China. E-mail: wstian@lzu.edu.cn
Save