• Baker, P. A., , C. A. Rigsby, , G. O. Seltzer, , S. C. Fritz, , T. K. Lowenstein, , N. P. Bacher, , and C. Veliz, 2001a: Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature, 409, 698701, doi:10.1038/35055524.

    • Search Google Scholar
    • Export Citation
  • Baker, P. A., and et al. , 2001b: The history of South American tropical precipitation for the past 25,000 years. Science, 291, 640643, doi:10.1126/science.291.5504.640.

    • Search Google Scholar
    • Export Citation
  • Battisti, D., , Q. Ding, , and G. Roe, 2014: Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J. Geophys. Res. Atmos., 119, 11 997–12 020, doi:10.1002/2014JD021960.

    • Search Google Scholar
    • Export Citation
  • Bird, B. W., , M. B. Abbott, , D. T. Rodbell, , and M. Vuille, 2011: Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ18O record. Earth Planet. Sci. Lett., 310, 192202, doi:10.1016/j.epsl.2011.08.040.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., , M. Loutre, , B. Dong, , S. Joussaume, , and P. Valdes, 2002: How the simulated change in monsoon at 6 ka BP is related to the simulation of the modern climate: Results from the Paleoclimate Modeling Intercomparison Project. Climate Dyn., 19, 107121, doi:10.1007/s00382-001-0217-5.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and et al. , 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, doi:10.5194/cp-3-261-2007.

    • Search Google Scholar
    • Export Citation
  • Chamales, K. A., 2014: The effects of orbital precession on tropical precipitation. M.S. thesis, Dept. of Meteorology and Physical Oceanography, University of Miami, 51 pp.

  • Cheng, H., , R. L. Edwards, , W. S. Broecker, , G. H. Denton, , X. Kong, , Y. Wang, , R. Zhang, , and X. Wang, 2009: Ice age terminations. Science,326, 248–252, doi:10.1126/science.1177840.

  • Cheng, H., and et al. , 2013: Climate change patterns in Amazonia and biodiversity. Nat. Commun., 4, 1411, doi:10.1038/ncomms2415.

  • Cook, K., , J. Hsieh, , and S. Hagos, 2004: The Africa–South America intercontinental teleconnection. J. Climate, 17, 28512865, doi:10.1175/1520-0442(2004)017<2851:TAAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cruz, F. W., and et al. , 2005: Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434, 6366, doi:10.1038/nature03365.

    • Search Google Scholar
    • Export Citation
  • Cruz, F. W., and et al. , 2009: Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci., 2, 210214, doi:10.1038/ngeo444.

    • Search Google Scholar
    • Export Citation
  • Curtis, J. H., , M. Brenner, , and D. A. Hodell, 1999: Climate change in the Lake Valencia basin, Venezuela, ~12 600 yr BP to present. Holocene, 9, 609619, doi:10.1191/095968399669724431.

    • Search Google Scholar
    • Export Citation
  • deMenocal, P., , and J. Tierney, 2012: Green Sahara: African humid periods paced by Earth’s orbital changes. Nat. Educ. Knowl., 3 (10), 12.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , D. S. Battisti, , R. Garreaud, , G. McCabe, , and C. Bitz, 2001: Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. Interhemispheric Climate Linkages: Present and Past Climates in the Americas and their Societal Effects, V. Markgraf, Ed., Academic Press, 1–16.

  • Donohoe, A., , and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, doi:10.1175/2011JCLI3946.1.

    • Search Google Scholar
    • Export Citation
  • Fritz, S. C., and et al. , 2004: Hydrologic variation during the last 170,000 years in the Southern Hemisphere tropics of South America. Quat. Res., 61, 95104, doi:10.1016/j.yqres.2003.08.007.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , M. Vuille, , R. Compagnucci, , and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, doi:10.1016/j.palaeo.2007.10.032.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grootes, P., , M. Stuiver, , L. Thompson, , and E. Mosley-Thompson, 1989: Oxygen isotope changes in tropical ice, Quelccaya, Peru. J. Geophys. Res.,94 (D1), 1187–1194, doi:10.1029/JD094iD01p01187.

  • Haug, G. H., , K. A. Hughen, , D. M. Sigman, , L. C. Peterson, , and U. Röhl, 2001: Southward migration of the intertropical convergence zone through the Holocene. Science, 293, 13041308, doi:10.1126/science.1059725.

    • Search Google Scholar
    • Export Citation
  • Hodell, D. A., , J. H. Curtis, , G. A. Jones, , A. Higuera-Gundy, , M. Brenner, , M. W. Binford, , and K. T. Dorsey, 1991: Reconstruction of Caribbean climate change over the past 10,500 years. Nature, 352, 790793, doi:10.1038/352790a0.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, G., , M. Werner, , and M. Heimann, 1998: Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. J. Geophys. Res.,103 (D14), 16 871–16 896, doi:10.1029/98JD00423.

  • Kanner, L. C., 2012: An isotopic perspective on climatic change in tropical South America from the modern through the Last Glacial period. Ph.D. dissertation, University of Massachusetts–Amherst, 201 pp.

  • Kanner, L. C., , S. J. Burns, , H. Cheng, , and R. L. Edwards, 2012: High-latitude forcing of the South American summer monsoon during the last glacial. Science, 335, 570573, doi:10.1126/science.1213397.

    • Search Google Scholar
    • Export Citation
  • Kanner, L. C., , S. J. Burns, , H. Cheng, , R. L. Edwards, , and M. Vuille, 2013: High-resolution variability of the South American summer monsoon over the last seven millennia: Insights from a speleothem record from the central Peruvian Andes. Quat. Sci. Rev., 75, 110, doi:10.1016/j.quascirev.2013.05.008.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., 1993: Large-scale common features of subtropical convergence zones (the Baiu frontal zone, the SPCZ and the SACZ). Part II: Conditions of the circulations for generating the STCZs. J. Meteor. Soc. Japan, 71, 581610.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , and P. J. Guetter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J. Atmos. Sci., 43, 17261759, doi:10.1175/1520-0469(1986)043<1726:TIOCOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamy, F., , D. Hebbeln, , and G. Wefer, 1998: Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and palaeoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 141, 233251, doi:10.1016/S0031-0182(98)90052-9.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., , and I. Fung, 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, doi:10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , B. Otto-Bliesner, , J. Kutzbach, , L. Li, , and C. Shields, 2003: Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Climate, 16, 24722490, doi:10.1175/1520-0442(2003)016<2472:CCSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, L., and et al. , 1997: Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr BP. Quat. Res., 47, 117122, doi:10.1006/qres.1996.1866.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , S. W. Lyons, , and J. A. Spahr, 1990: The impact of sea surface temperature anomalies on the rainfall over northeast Brazil. J. Climate, 3, 812826, doi:10.1175/1520-0442(1990)003<0812:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mosblech, N. A., and et al. , 2012: North Atlantic forcing of Amazonian precipitation during the last ice age. Nat. Geosci., 5, 817820, doi:10.1038/ngeo1588.

    • Search Google Scholar
    • Export Citation
  • Moura, A. D., , and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci., 38, 26532675, doi:10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., , and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, doi:10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philander, S., , D. Gu, , G. Lambert, , T. Li, , D. Halpern, , N. Lau, , and R. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polissar, P. J., , M. B. Abbott, , A. P. Wolfe, , M. Vuille, , and M. Bezada, 2013: Synchronous interhemispheric Holocene climate trends in the tropical Andes. Proc. Natl. Acad. Sci. USA, 110, 14 55114 556, doi:10.1073/pnas.1219681110.

    • Search Google Scholar
    • Export Citation
  • Prado, L. F., , I. Wainer, , and C. M. Chiessi, 2013: Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American monsoon system. Holocene, 23, 19151920, doi:10.1177/0959683613505336.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp.

  • Rozanski, K., , L. Araguás-Araguás, , and R. Gonfiantini, 1993: Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, P. K. Swart et al., Eds., Amer. Geophys. Union, 1–36, doi:10.1029/GM078p0001.

  • Salati, E., , A. Dall’Olio, , E. Matsui, , and J. R. Gat, 1979: Recycling of water in the Amazon basin: An isotopic study. Water Resour. Res., 15, 12501258, doi:10.1029/WR015i005p01250.

    • Search Google Scholar
    • Export Citation
  • Seltzer, G., , D. Rodbell, , and S. Burns, 2000: Isotopic evidence for late Quaternary climatic change in tropical South America. Geology, 28, 3538, doi:10.1130/0091-7613(2000)28<35:IEFLQC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stansell, N. D., , P. J. Polissar, , M. B. Abbott, , M. Bezada, , B. A. Steinman, , and C. Braun, 2014: Proglacial lake sediment records reveal Holocene climate changes in the Venezuelan Andes. Quat. Sci. Rev., 89, 4455, doi:10.1016/j.quascirev.2014.01.021.

    • Search Google Scholar
    • Export Citation
  • Stríkis, N. M., and et al. , 2011: Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology, 39, 10751078, doi:10.1130/G32098.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, L. G., , E. Mosley-Thompson, , M. E. Davis, , P.-N. Lin, , K. A. Henderson, , J. Cole-Dai, , J. F. Bolzan, , and K.-B. Liu, 1995: Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science, 269, 4650, doi:10.1126/science.269.5220.46.

    • Search Google Scholar
    • Export Citation
  • van Breukelen, M., , H. Vonhof, , J. Hellstrom, , W. Wester, , and D. Kroon, 2008: Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet. Sci. Lett., 275, 5460, doi:10.1016/j.epsl.2008.07.060.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and et al. , 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, doi:10.1175/JCLI3896.1.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., , and M. Werner, 2005: Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results. Climate Dyn., 25, 401413, doi:10.1007/s00382-005-0049-9.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., , R. S. Bradley, , M. Werner, , R. Healy, , and F. Keimig, 2003: Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J. Geophys. Res.,108 (D6), 4174, doi:10.1029/2001JD002038.

  • Vuille, M., and et al. , 2012: A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate Past, 8, 13091321, doi:10.5194/cp-8-1309-2012.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, doi:10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , A. S. Auler, , R. L. Edwards, , H. Cheng, , P. S. Cristalli, , P. L. Smart, , D. A. Richards, , and C.-C. Shen, 2004: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432, 740743, doi:10.1038/nature03067.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , A. S. Auler, , R. L. Edwards, , H. Cheng, , E. Ito, , Y. Wang, , X. Kong, , and M. Solheid, 2007: Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys. Res. Lett.,34, L23701, doi:10.1029/2007GL031149.

  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., , and K. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 19
PDF Downloads 66 66 12

The Influence of Orbital Forcing of Tropical Insolation on the Climate and Isotopic Composition of Precipitation in South America

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The δ18O of calcite (δ18Oc) in speleothems from South America is fairly well correlated with austral summer [December–February (DJF)] insolation, indicating the role of orbitally paced changes in insolation in changing the climate of South America. Using an isotope-enabled atmospheric general circulation model (ECHAM4.6) coupled to a slab ocean model, the authors study how orbitally paced variations in insolation change climate and the isotopic composition of precipitation (δ18Op) of South America. Compared with times of high summertime insolation, times of low insolation feature (i) a decrease in precipitation inland of tropical South America as a result of an anomalous cooling of the South American continent and hence a weakening of the South American summer monsoon and (ii) an increase in precipitation in eastern Brazil that is associated with the intensification and southward movement of the Atlantic intertropical convergence zone, which is caused by the strengthening of African winter monsoon that is induced by the anomalous cooling of northern Africa. Finally, reduced DJF insolation over southern Africa causes cooling and the generation of a tropically trapped Rossby wave that intensifies and shifts the South Atlantic convergence zone northward. In times of low insolation, δ18Op increases in the northern Andes and decreases in northeastern Brazil, consistent with the pattern of δ18Oc changes seen in speleothems. Further analysis shows that the decrease in δ18Op in northeastern Brazil is due to change in the intensity of precipitation, while the increase in the northern Andes reflects a change in the seasonality of precipitation and in the isotopic composition of vapor that forms the condensates.

Corresponding author address: Xiaojuan Liu, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: xjliu@uw.edu

Abstract

The δ18O of calcite (δ18Oc) in speleothems from South America is fairly well correlated with austral summer [December–February (DJF)] insolation, indicating the role of orbitally paced changes in insolation in changing the climate of South America. Using an isotope-enabled atmospheric general circulation model (ECHAM4.6) coupled to a slab ocean model, the authors study how orbitally paced variations in insolation change climate and the isotopic composition of precipitation (δ18Op) of South America. Compared with times of high summertime insolation, times of low insolation feature (i) a decrease in precipitation inland of tropical South America as a result of an anomalous cooling of the South American continent and hence a weakening of the South American summer monsoon and (ii) an increase in precipitation in eastern Brazil that is associated with the intensification and southward movement of the Atlantic intertropical convergence zone, which is caused by the strengthening of African winter monsoon that is induced by the anomalous cooling of northern Africa. Finally, reduced DJF insolation over southern Africa causes cooling and the generation of a tropically trapped Rossby wave that intensifies and shifts the South Atlantic convergence zone northward. In times of low insolation, δ18Op increases in the northern Andes and decreases in northeastern Brazil, consistent with the pattern of δ18Oc changes seen in speleothems. Further analysis shows that the decrease in δ18Op in northeastern Brazil is due to change in the intensity of precipitation, while the increase in the northern Andes reflects a change in the seasonality of precipitation and in the isotopic composition of vapor that forms the condensates.

Corresponding author address: Xiaojuan Liu, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: xjliu@uw.edu
Save