• Alexander, M. A., , and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 29632978, doi:10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , S. Lee, , and S. B. Feldstein, 2004: Synoptic view of the North Atlantic oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21, 16801697, doi:10.1175/2007JCLI1797.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , and D. H. Peterson, 1989: The influence of North Pacific atmospheric circulation on streamflow in the west. Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr., Vol. 35, Amer. Geophys. Union, 375–397.

  • Chang, E. K. M., 2009: Are band-pass variance statistics useful measures of storm track activity? Re-examining storm track variability associated with the NAO using multiple storm track measures. Climate Dyn., 33, 277296, doi:10.1007/s00382-009-0532-9.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and et al. , 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chhak, K. C., , E. Di Lorenzo, , N. Schneider, , and P. F. Cummins, 2009: Forcing of low-frequency ocean variability in the northeast Pacific. J. Climate, 22, 12551276, doi:10.1175/2008JCLI2639.1.

    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., , and J. C. Davenport, 1987: Rapid surface anticyclogenesis: Synoptic climatology and attendant large-scale circulation changes. Mon. Wea. Rev., 115, 822836, doi:10.1175/1520-0493(1987)115<0822:RSASCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter—1900–1989. J. Climate, 6, 17431753, doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and et al. , 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , N. Sennechael, , Y. O. Kwon, , and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., , and E. K. M. Chang, 2003: Storm track variations as seen in radiosonde observations and reanalysis data. J. Climate, 16, 480495, doi:10.1175/1520-0442(2003)016<0480:STVASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Hoskins, B. J., , and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , and H. VanLoon, 1997: Decadal variations in climate associated with the North Atlantic oscillation. Climatic Change, 36, 301326, doi:10.1023/A:1005314315270.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, doi:10.1016/j.jmarsys.2009.11.002.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , Y. Kushnir, , G. Ottersen, , and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell et al., Eds., Amer. Geophys. Union, 1–33.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., , R. J. Small, , R. M. Samelson, , B. Qiu, , T. M. Joyce, , Y.-O. Kwon, , and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate,23, 5644–5667, doi:10.1175/2010JCLI3346.1.

  • Kushnir, Y., , W. A. Robinson, , I. Bladé, , N. M. J. Hall, , S. Peng, , and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., , and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 98399859, doi:10.1175/JCLI-D-12-00647.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., , M. A. Alexander, , N. A. Bond, , C. Frankignoul, , H. Nakamura, , B. Qiu, , and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate,23, 3249–3281, doi:10.1175/2010JCLI3343.1.

  • Linkin, M. E., , and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, doi:10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Maidens, A., , A. Arribas, , A. A. Scaife, , C. MacLachlan, , D. Peterson, , and J. Knight, 2013: The influence of surface forcings on prediction of the North Atlantic Oscillation regime of winter 2010/11. Mon. Wea. Rev., 141, 38013813, doi:10.1175/MWR-D-13-00033.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. B. Chelton, 2006: An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. J. Climate, 19, 27432762, doi:10.1175/JCLI3728.1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and et al. , 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, doi:10.1002/joc.693.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., , and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Prog. Oceanogr., 47, 355379, doi:10.1016/S0079-6611(00)00044-6.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., , D. R. Cayan, , T. P. Barnett, , N. E. Graham, , and J. M. Oberhuber, 1994: The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7, 2126, doi:10.5670/oceanog.1994.11.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., , F. Chai, , S. Chiba, , J. R. Moisan, , and D. J. Neilson, 2004: Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. J. Oceanogr., 60, 163188, doi:10.1023/B:JOCE.0000038325.36306.95.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1996: Year-to-year and interdecadal variability in the activity of intraseasonal fluctuations in the Northern Hemisphere wintertime circulation. Theor. Appl. Climatol., 55, 1932, doi:10.1007/BF00864700.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , G. Lin, , and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 22152225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , T. Sampe, , Y. Tanimoto, , and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Mongr., Vol. 147, Amer. Geophys. Union, 329–345.

  • Nakamura, H., , T. Sampe, , A. Goto, , W. Ohfuchi, , and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22, 880904, doi:10.1175/2008JCLI2297.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and S. Yamane, 2010: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Climate, 23, 64456467, doi:10.1175/2010JCLI3017.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate,25, 5916–5942, doi:10.1175/JCLI-D-11-00230.1.

  • Qiu, B., , S. Chen, , and P. Hacker, 2004: Synoptic-scale air–sea flux forcing in the western North Pacific: Observations and their impact on SST and the mixed layer. J. Phys. Oceanogr., 34, 21482159, doi:10.1175/1520-0485(2004)034<2148:SAFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., , and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, doi:10.1175/JAS3850.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific oscillation. J. Climatol., 1, 3957, doi:10.1002/joc.3370010106.

  • Rogers, J. C., 1990: Patterns of low-frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J. Climate, 3, 13641379, doi:10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10, 16351647, doi:10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., , and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, doi:10.1175/BAMS-88-12-1965.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1998: Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies using the NCAR climate system model. J. Climate, 11, 13861404, doi:10.1175/1520-0442(1998)011<1386:ALFVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , R. M. Samelson, , and E. Skyllingstad, 2010: Air–sea fluxes over the Gulf Stream region: Atmospheric controls and trends. J. Climate, 23, 26512670, doi:10.1175/2010JCLI3269.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., , H. Nakamura, , M. Nonaka, , and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560, doi:10.1175/2009JCLI2910.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., , H. Nakamura, , M. Nonaka, , N. Komori, , A. Kuwano-Yoshida, , K. Takaya, , and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate,25, 111–139, doi:10.1175/JCLI-D-11-00046.1.

  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., , and E. P. Gerber, 2008: Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn. Atmos. Oceans, 44, 184212, doi:10.1016/j.dynatmoce.2007.04.003.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., , and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296310, doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., , A. S. Phillips, , D. H. Portis, , and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, doi:10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, D. D., , V. L. Harvey, , D. E. Atkinson, , R. L. Collins, , and M. J. Mills, 2011: A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. J. Geophys. Res., 116, D12107, doi:10.1029/2011JD015711.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , B. Hoskins, , M. Blackburn, , and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , X. Jin, , and R. A. Weller, 2008: Multidecadel global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, 64 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 874 874 209
PDF Downloads 63 63 28

Winter Extreme Flux Events in the Kuroshio and Gulf Stream Extension Regions and Relationship with Modes of North Pacific and Atlantic Variability

View More View Less
  • 1 Department of Oceanography, Texas A&M University, College Station, Texas, and Ocean University of China, Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, China
  • | 2 Department of Oceanography, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, and Ocean University of China, Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, China
  • | 3 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 4 Ocean University of China, Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, China
© Get Permissions
Restricted access

Abstract

Boreal winter (November–March) extreme flux events in the Kuroshio Extension region (KER) of the northwestern Pacific and the Gulf Stream region (GSR) of the northwestern Atlantic are analyzed and compared, based on NCEP Climate Forecast System Reanalysis (CFSR), NCEP–NCAR reanalysis, and NOAA Twentieth Century Reanalysis data, as well as the observationally derived OAFlux dataset. These extreme flux events, most of which last less than 3 days, are characterized by cold air outbreaks (CAOs) with an anomalous northerly wind that brings cold and dry air from the Eurasian and North American continents to the KER and GSR, respectively. A close relationship between the extreme flux events over KER (GSR) and the Aleutian low pattern (ALP) [east Atlantic pattern (EAP)] is found with more frequent occurrence of the extreme flux events during a positive ALP (EAP) phase and vice versa. A further lag-composite analysis suggests that the ALP (EAP) is associated with accumulated effects of the synoptic winter storms accompanied by the extreme flux events and shows that the event-day storms tend to have a preferred southeastward propagation path over the North Pacific (Atlantic), potentially contributing to the southward shift of the storm track over the eastern North Pacific (Atlantic) basin during the ALP (EAP) positive phase. Finally, lag-regression analyses indicate a potential positive influence of sea surface temperature (SST) anomalies along the KER (GSR) on the development of the extreme flux events in the North Pacific (Atlantic).

Corresponding author address: Xiaohui Ma, O&M Building, MS3146, Department of Oceanography, Texas A&M University, College Station, TX 77840. E-mail: maxiaohui@tamu.edu

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

Boreal winter (November–March) extreme flux events in the Kuroshio Extension region (KER) of the northwestern Pacific and the Gulf Stream region (GSR) of the northwestern Atlantic are analyzed and compared, based on NCEP Climate Forecast System Reanalysis (CFSR), NCEP–NCAR reanalysis, and NOAA Twentieth Century Reanalysis data, as well as the observationally derived OAFlux dataset. These extreme flux events, most of which last less than 3 days, are characterized by cold air outbreaks (CAOs) with an anomalous northerly wind that brings cold and dry air from the Eurasian and North American continents to the KER and GSR, respectively. A close relationship between the extreme flux events over KER (GSR) and the Aleutian low pattern (ALP) [east Atlantic pattern (EAP)] is found with more frequent occurrence of the extreme flux events during a positive ALP (EAP) phase and vice versa. A further lag-composite analysis suggests that the ALP (EAP) is associated with accumulated effects of the synoptic winter storms accompanied by the extreme flux events and shows that the event-day storms tend to have a preferred southeastward propagation path over the North Pacific (Atlantic), potentially contributing to the southward shift of the storm track over the eastern North Pacific (Atlantic) basin during the ALP (EAP) positive phase. Finally, lag-regression analyses indicate a potential positive influence of sea surface temperature (SST) anomalies along the KER (GSR) on the development of the extreme flux events in the North Pacific (Atlantic).

Corresponding author address: Xiaohui Ma, O&M Building, MS3146, Department of Oceanography, Texas A&M University, College Station, TX 77840. E-mail: maxiaohui@tamu.edu

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save