• Bengtsson, L., , and S. E. Schwartz, 2013: Determination of a lower bound on Earth’s climate sensitivity. Tellus, 65B, 21533, http://dx.doi.org/10.3402/tellusb.v65i0.21533.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and et al. , 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and et al. , 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., , and T. L. Anderson, 1995: General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res.,100 (D12), 26 117–26 134, doi:10.1029/95JD02531.

  • Boucher, O., , and M. Pham, 2002: History of sulfate aerosol radiative forcings. Geophys. Res. Lett., 29, 1308, doi:10.1029/2001GL014048.

  • Boucher, O., , and J. Quaas, 2012: Water vapour affects both rain and aerosol optical depth. Nat. Geosci., 6, 45, doi:10.1038/ngeo1692.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Brasseur, G. P., , and E. Roeckner, 2005: Impact of improved air quality on the future evolution of climate. Geophys. Res. Lett.,32, L23704, doi:10.1029/2005GL023902.

  • Callendar, G., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223240, doi:10.1002/qj.49706427503.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and et al. , 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, doi:10.1038/nature12674.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., , J. Langner, , H. Rodhe, , C. B. Leovy, , and S. G. Warren, 1991: Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152163, doi:10.1034/j.1600-0870.1991.00013.x.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., , S. E. Schwartz, , J. M. Hales, , R. D. Cess, , J. A. Coakley, , J. E. Hansen, , and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, doi:10.1126/science.255.5043.423.

    • Search Google Scholar
    • Export Citation
  • Chen, Y. C., , M. W. Christensen, , L. Xue, , A. Sorooshian, , G. L. Stephens, , R. M. Rasmussen, , and J. H. Seinfeld, 2012: Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys., 12, 82238235, doi:10.5194/acp-12-8223-2012.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., , and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res.,116, D03201, doi:10.1029/2010JD014638.

  • Collins, W. J., and et al. , 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Déandreis, C., , Y. Balkanski, , J. L. Dufresne, , and A. Cozic, 2012: Radiative forcing estimates of sulfate aerosol in coupled climate–chemistry models with emphasis on the role of the temporal variability. Atmos. Chem. Phys., 12, 55835602, doi:10.5194/acp-12-5583-2012.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and et al. , 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., 2014: Do sophisticated parameterizations of aerosol–cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? J. Geophys. Res. Atmos., 119, 817832, doi:10.1002/2013JD020511.

    • Search Google Scholar
    • Export Citation
  • Fischer, H., , D. Wagenbach, , and J. Kipfstuhl, 1998: Sulfate and nitrate firn concentrations on the Greenland ice sheet: 2. Temporal anthropogenic deposition changes. J. Geophys. Res., 103 (D17), 21 935–21 942, doi:10.1029/98JD01886.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Giorgetta, M. A., and et al. , 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., , M. Salzmann, , L. J. Donner, , L. W. Horowitz, , Y. Ming, , and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, 31453160, doi:10.1175/2010JCLI3945.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. A. Senior, , H. Banks, , J. M. Gregory, , T. C. Johns, , J. F. B. Mitchell, , and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., 2005: Efficacy of climate forcings. J. Geophys. Res.,110, D18104, doi:10.1029/2005JD005776.

  • Hansen, J., , M. Sato, , and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 (D6), 68316864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., , J. E. Kristjansson, , T. Iversen, , A. Kirkevåg, , O. Seland, , and A. Gettelman, 2009: Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect. Geophys. Res. Lett.,36, L12807, doi:10.1029/2009GL038568.

  • Hourdin, F., and et al. , 2013: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40, 21932222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Ji, D., and et al. , 2014: Description and basic evaluation of BNU-ESM version 1. Geosci. Model Dev. Discuss., 7, 16011647, doi:10.5194/gmdd-7-1601-2014.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and et al. , 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, doi:10.5194/gmd-4-543-2011.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , and S.-P. Xie, 2014: Dependence of climate response on meridional structure of external thermal forcing. J. Climate, 27, 5593–5600, doi:10.1175/JCLI-D-13-00622.1.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., and et al. , 2013: MAC-v1: A new global aerosol climatology for climate studies. J. Adv. Model. Earth Syst., 5, 704740, doi:10.1002/jame.20035.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kühn, T., , A. I. Partanen, , A. Laakso, , and Z. Lu, 2014: Climate impacts of changing aerosol emissions since 1996. Geophys. Res. Lett., 41, 47114718, doi:10.1002/2014GL060349.

    • Search Google Scholar
    • Export Citation
  • Li, L., and et al. , 2013: The flexible global ocean–atmosphere–land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • McConnell, J. R., and et al. , 2007: 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317, 13811384, doi:10.1126/science.1144856.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, doi:10.1007/s00382-009-0694-5.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 1957–1977, doi:10.1007/s00382-014-2138-0.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683, doi:10.1175/JCLI-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, doi:10.1175/JCLI-D-12-00572.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., , J. J. Kennedy, , N. A. Rayner, , and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res.,117, D08101, 10.1029/2011JD017187.

  • Murphy, D. M., 2013: Little net clear-sky radiative forcing from recent regional redistribution of aerosols. Nat. Geosci., 6, 258262, doi:10.1038/ngeo1740.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., , S. Solomon, , R. W. Portmann, , K. H. Rosenlof, , P. M. Forster, , and T. Wong, 2009: An observationally based energy balance for the Earth since 1950. J. Geophys. Res.,114, D17107, doi:10.1029/2009JD012105.

  • Myhre, G., and et al. , 2013a: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Myhre, G., and et al. , 2013b: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 18531877, doi:10.5194/acp-13-1853-2013.

    • Search Google Scholar
    • Export Citation
  • Nam, C., , S. Bony, , J. L. Dufresne, , and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett.,39, L21801, doi:10.1029/2012GL053421.

  • Pincus, R., , and B. Stevens, 2013: Paths to accuracy for radiation parameterizations in atmospheric models. J. Adv. Model. Earth Syst., 5, 225233, doi:10.1002/jame.20027.

    • Search Google Scholar
    • Export Citation
  • Prather, M., , G. Flato, , P. Friedlingstein, , C. Jones, , J.-F. Lamarque, , H. Liao, , and P. Rasch, 2013: Annex II: Climate system scenario tables. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1395–1445.

  • Ramaswamy, V., and et al. , 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds, Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , S. J. Jeffrey, , M. A. Collier, , S. M. Dravitzki, , A. C. Hirst, , J. I. Syktus, , and K. K. Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 63776404, doi:10.5194/acp-12-6377-2012.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., , C. Textor, , and S. Kinne, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 5225-5246, doi:10.5194/acp-6-5225-2006.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , S. Bony, , O. Boucher, , C. Bretherton, , P. M. Forster, , J. M. Gregory, , and B. Stevens, 2015: Adjustments in the forcing–feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, doi:10.1175/BAMS-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., 2014: Inhomogeneous forcing and transient climate sensitivity. Nat. Climate Change, 4, 274277, doi:10.1038/nclimate2136.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and et al. , 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Skeie, R. B., , T. K. Berntsen, , G. Myhre, , K. Tanaka, , M. M. Kvalevåg, , and C. R. Hoyle, 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11 82711 857, doi:10.5194/acp-11-11827-2011.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., , J. van Aardenne, , Z. Klimont, , R. J. Andres, , A. Volke, , and S. Delgado Arias, 2011: Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys., 11, 11011116, doi:10.5194/acp-11-1101-2011.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , T. Nakajima, , M. Satoh, , and H. S. Jang, 2010: Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results. Atmos. Chem. Phys., 10, 11 64111 646, doi:10.5194/acp-10-11641-2010.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and S. E. Schwartz, 2012: Observing and modeling Earth’s energy flows. Surv. Geophys., 33, 779816, doi:10.1007/s10712-012-9184-0.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and et al. , 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and et al. , 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Stier, P., and et al. , 2013: Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom prescribed intercomparison study. Atmos. Chem. Phys., 13, 32453270, doi:10.5194/acp-13-3245-2013.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., , U. Lohmann, , and R. Bennartz, 2009: What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys. Res. Lett.,36, L01806, doi:10.1029/2008GL036069.

  • Suo, L., , O. Helge Otterå, , M. Bentsen, , Y. Gao, , and O. M. Johannessen, 2013: External forcing of the early 20th century Arctic warming. Tellus, 65A, 20578, http://dx.doi.org/10.3402/tellusa.v65i0.20578.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., , C. Roelandt, , M. Bentsen, , D. M. Lawrence, , T. Lorentzen, , J. Schwinger, , Ø. Seland, , and C. Heinze, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301325, doi:10.5194/gmd-6-301-2013.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., , B. Stevens, , G. Vali, , and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106, doi:10.1175/JAS-3355.1.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , S. Bony, , J.-L. Dufresne, , and B. Stevens, 2014a: The radiative impact of clouds on the shift of the intertropical convergence zone. Geophys. Res. Lett.,41, 4308–4315, doi:10.1002/2014GL060354.

  • Voigt, A., , B. Stevens, , J. Bader, , and T. Mauritsen, 2014b: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, doi:10.1175/JCLI-D-13-00205.1.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., , N. A. Dianskii, , and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and et al. , 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and et al. , 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , E. J. Highwood, , and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett.,8, 024033, doi:10.1088/1748-9326/8/2/024033.

  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wyant, M. C., and et al. , 2015: Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: The VOCA intercomparison. Atmos. Chem. Phys., 15, 153172, doi:10.5194/acp-15-153-2015.

    • Search Google Scholar
    • Export Citation
  • Xin, X., , T. Wu, , J. Li, , Z. Wang, , W. Li, , and F. Wu, 2013: How well does BCC CSM1.1 reproduce the 20th century climate change over China? Atmos. Oceanic Sci. Lett., 6, 2126.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and et al. , 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , T. Andrews, , and P. M. Forster, 2014: Quantifying components of aerosol–cloud–radiation interactions in climate models. J. Geophys. Res. Atmos., 119, 75997615, doi:10.1002/2014JD021710.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 763 763 83
PDF Downloads 220 220 38

Rethinking the Lower Bound on Aerosol Radiative Forcing

View More View Less
  • 1 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

Based on research showing that in the case of a strong aerosol forcing, this forcing establishes itself early in the historical record, a simple model is constructed to explore the implications of a strongly negative aerosol forcing on the early (pre-1950) part of the instrumental record. This model, which contains terms representing both aerosol–radiation and aerosol–cloud interactions, well represents the known time history of aerosol radiative forcing as well as the effect of the natural state on the strength of aerosol forcing. Model parameters, randomly drawn to represent uncertainty in understanding, demonstrate that a forcing more negative than −1.0 W m−2 is implausible, as it implies that none of the approximately 0.3-K temperature rise between 1850 and 1950 can be attributed to Northern Hemisphere forcing. The individual terms of the model are interpreted in light of comprehensive modeling, constraints from observations, and physical understanding to provide further support for the less negative (−1.0 W m−2) lower bound. These findings suggest that aerosol radiative forcing is less negative and more certain than is commonly believed.

Denotes Open Access content.

Corresponding author address: Bjorn Stevens, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: bjorn.stevens@mpimet.mpg.de

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0668.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0034.1

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0369.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-18-0185.1

Abstract

Based on research showing that in the case of a strong aerosol forcing, this forcing establishes itself early in the historical record, a simple model is constructed to explore the implications of a strongly negative aerosol forcing on the early (pre-1950) part of the instrumental record. This model, which contains terms representing both aerosol–radiation and aerosol–cloud interactions, well represents the known time history of aerosol radiative forcing as well as the effect of the natural state on the strength of aerosol forcing. Model parameters, randomly drawn to represent uncertainty in understanding, demonstrate that a forcing more negative than −1.0 W m−2 is implausible, as it implies that none of the approximately 0.3-K temperature rise between 1850 and 1950 can be attributed to Northern Hemisphere forcing. The individual terms of the model are interpreted in light of comprehensive modeling, constraints from observations, and physical understanding to provide further support for the less negative (−1.0 W m−2) lower bound. These findings suggest that aerosol radiative forcing is less negative and more certain than is commonly believed.

Denotes Open Access content.

Corresponding author address: Bjorn Stevens, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: bjorn.stevens@mpimet.mpg.de

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0668.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0034.1

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0369.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-18-0185.1

Save