• Abhik, S., , M. Halder, , P. Mukhopadhyay, , X. Jiang, , and B. N. Goswami, 2013: A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Climate Dyn., 40, 16111624, doi:10.1007/s00382-012-1425-x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., , and R. D. Rosen, 1983: The latitude-height structure of 40-50 day variation in atmospheric angular momentum. J. Atmos. Sci., 40, 15841584, doi:10.1175/1520-0469(1983)040<1584:TLHSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Bai, H. Z., , J. N. Xie, , and D. L. Li, 2001: The principal feature of Qinghai Xizang Plateau monsoon variation in 40 years (in Chinese). Plateau Meteor.,20, 22–27.

  • Bao, X. H., , and F. Q. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, doi:10.1175/JCLI-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 hPa geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , J. M. Wallace, , N. C. Lau, , and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, doi:10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , Y. H. Lee, , and J. M. Wallace, 1984a: Horizontal structure of 500mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961979, doi:10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , Y. H. Lee, , J. M. Wallace, , and H. H. Hsu, 1984b: Time variation of 500mb height fluctuation with long, intermediate and short time scales as deduced from lag-correlation statistic. J. Atmos. Sci., 41, 981991, doi:10.1175/1520-0469(1984)041<0981:TVOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , W. X. Ai, , and J. J. Xu, 2002: Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J. Meteor. Soc. Japan, 80, 11031113, doi:10.2151/jmsj.80.1103.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., , and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, doi:10.1256/qj.03.133.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., , and J. M. Chen, 1993: The 10–20 day mode of the 1979 Indian monsoon: Its relation with time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, doi:10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., , and J. R. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 22952318, doi:10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., , M. C. Yen, , and S. P. Weng, 2000: Interaction between the summer monsoon in East Asia and the South China Sea: Intraseasonal monsoon modes. J. Atmos. Sci., 57, 13731392, doi:10.1175/1520-0469(2000)057<1373:IBTSMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., , and B. Wang, 2007: Intraseasonal teleconnection between the Eurasian wave train and Indian monsoon. J. Climate, 20, 37513767, doi:10.1175/JCLI4221.1.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., , and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, doi:10.1007/s00382-004-0488-8.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., , and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164, doi:10.1175/2007JCLI1912.1.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., , G. X. Wu, , and X. Y. Liang, 2008: Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model. Adv. Atmos. Sci., 25, 518528, doi:10.1007/s00376-008-0518-2.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., , J. Hu, , and Z. X. Xiao, 2013: The Tibetan Plateau summer monsoon in the CMIP5 simulations. J. Climate, 26, 77477766, doi:10.1175/JCLI-D-12-00685.1.

    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the summer monsoon in South and East Asia. J. Meteor. Soc. Japan, 35, 180186.

  • Flohn, H., 1960: Recent investigations on the mechanism of the “summer monsoon” of southern and eastern Asia. Monsoons of the World, N. Delhi, Ed., Hindu Union Press, 75–88.

  • Fu, X. H., , B. Wang, , and L. Tao, 2006: Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett., 33, L03705, doi:10.1029/2005GL025074.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., , and T. Yasunari, 2004: Submonthly variability of convection and circulation over and around the Tibetan Plateau during the boreal summer. J. Meteor. Soc. Japan, 82, 15451564, doi:10.2151/jmsj.82.1545.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., , and T. Yasunari, 2009: The effects of midlatitude waves over and around the Tibetan Plateau on submonthly variability of the East Asian summer monsoon. Mon. Wea. Rev., 137, 22862304, doi:10.1175/2009MWR2826.1.

    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., , and T. Yasunari, 1999: 10-25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer. J. Meteor. Soc., 77, 753769.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , R. S. Aiayamohan, , P. K. Xavier, , and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, doi:10.1029/2002GL016734.

    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., , and S. Manabe, 1975: The role of mountains in the South Asian monsoon circulation. J. Atmos. Sci., 32, 15151541, doi:10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • He, Y. H., , C. Y. Li, , Q. Jin, , and X. L. Wang, 2006: Relationship between the low frequency oscillation of TBB in summer of Qinghai-Xizang Plateau and drought/flood in central China (in Chinese). Plateau Meteor.,25, 658–664.

  • Hsu, H.-H., , C.-H. Weng, , and C.-H. Wu, 2004: Contrasting characteristic between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17, 727743, doi:10.1175/1520-0442(2004)017<0727:CCBTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation datasets. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., , B. M. Kim, , C. H. Ho, , and Y. H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801, doi:10.1175/2007JCLI1801.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X. L., , and S. Yang, 2013: Impact of the quasi-biweekly oscillation over the western North Pacific on East Asian subtropical monsoon during early summer. J. Geophys. Res., 118, 44214434, doi:10.1002/jgrd.50422.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. A., , and N. C. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, doi:10.1175/2007JCLI2024.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. A., , T. Li, , and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, doi:10.1175/2008JCLI2368.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , B. Wang, , and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Ko, K. C., , and H. H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July-August season. J. Meteor. Soc. Japan, 84, 871889, doi:10.2151/jmsj.84.871.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1973: Tibetan high and upper tropical circulation during the northern summer. Bull. Amer. Meteor. Soc., 54, 12341239.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and P. Ardanuy, 1980: The 10–20-day westward propagating mode and breaks in the monsoons. Tellus, 32, 1526, doi:10.1111/j.2153-3490.1980.tb01717.x.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Subrahmanyam, 1982: The 30-50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, doi:10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and S. Gadgil, 1985: On the structure of the 30 to 50 day mode over the global during FGGE. Tellus, 37A, 336360, doi:10.1111/j.1600-0870.1985.tb00432.x.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and S. Yang, 1996: Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLAGCM. J. Climate, 9, 965985, doi:10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, F., , and A. M. Duan, 2011: Variation of the Tibetan Plateau summer monsoon and its effect on the rainfall and the circulation in Asia—A case study in 2008 (in Chinese). Chin. J. Atmos. Sci.,35, 694–706.

  • Li, Y. K., , Z. B. Sun, , and J. J. Zhang, 1991: Relationship between the 30-60 day oscillations in and around the Qinghai-Xizang plateau during the summer half year and the atmospheric circulation (in Chinese). J. Nanjing Inst. Meteor.,14, 483–488.

  • Liang, X. Y., , Y. M. Liu, , and G. X. Wu, 2005: The impact of Qinghai Xizang Plateau uplift on Asian general circulation in spring and summer (in Chinese). Plateau Meteor., 24, 837845.

    • Search Google Scholar
    • Export Citation
  • Lin, R. P., , T. J. Zhou, , and Y. Qian, 2014: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27, 12711289, doi:10.1175/JCLI-D-13-00215.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F. M., , and H. Lin, 1991: Relationships between the atmospheric low-frequency oscillation and the variation of the South Asian high (in Chinese). Plateau. Meteor.,10, 61–69.

  • Liu, Y. M., , B. J. Hoskins, , and M. Blackburn, 2007: Impact of Tibetan orography oscillation and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85, 119, doi:10.2151/jmsj.85.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., , and Y. H. Ding, 2008: Analysis and numerical simulation of the teleconnection between Indian summer monsoon and precipitation in north China. Acta Meteor. Sin., 66, 789799.

    • Search Google Scholar
    • Export Citation
  • Luo, H. B., , and M. Yanai, 1983: The large-scale circulation and heat sources over Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922944, doi:10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, H. B., , and M. Yanai, 1984: The large-scale circulation and heat sources over Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, L., , T. Zhang, , O. W. Frauenfeld, , B. Ye, , D. Yang, , and D. Qin, 2009: Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res., 114, D09105, doi:10.1029/2008JD011178.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., , and G. X. Wu, 2006: Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dyn., 27, 815830, doi:10.1007/s00382-006-0164-2.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., , Z. Sun, , and G. X. Wu, 2010: 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Climate Dyn., 34, 747761, doi:10.1007/s00382-009-0628-2.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1975: Cloudiness fluctuations during summer monsoon. J. Meteor. Soc. Japan, 54, 175181.

  • Murakami, T., , and M. Frydrych, 1974: On the preferred period of upper wind fluctuations during the summer monsoon. J. Atmos. Sci., 31, 15491555, doi:10.1175/1520-0469(1974)031<1549:OTPPOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1983: Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. J. Meteor. Soc. Japan, 61, 590605.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Characteristics of 4–20-day-period disturbances observed in the equatorial Pacific during the TOGACOARE IOP. J. Meteor. Soc. Japan, 73, 353377.

    • Search Google Scholar
    • Export Citation
  • Peng, R., , and B. Y. Wu, 1995: The phase propagations and geographical features of the 10-20 day oscillation in summer 1982/1983 (in Chinese). J. Appl. Meteor. Sci., 6, 206212.

    • Search Google Scholar
    • Export Citation
  • Prasanna, V., , and H. Annamalai, 2012: Moist dynamics of extended monsoon breaks over South Asia. J. Climate, 25, 38103831, doi:10.1175/JCLI-D-11-00459.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , J. M. Wallace, , and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, M. C., 1995: Discussion on interdecadal oscillation of the plateau monsoon and its cause (in Chinese). Sci. Meteor. Sin., 15, 6468.

    • Search Google Scholar
    • Export Citation
  • Tang, M. C., , and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112, 617637, doi:10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer Praxis, 203–257.

  • Wang, A., , and X. Zeng, 2012: Evaluation of multi reanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C. H., , Y. Cui, , and S. L. Jin, 2011: Oscillation propagation features of the atmosphere around the Qinghai-Xizang during the spring season of typical strong and weak monsoon years. Sci. China, 54, 305314, doi:10.1007/s11430-010-4113-x.

    • Search Google Scholar
    • Export Citation
  • Wang, M. R., , S. W. Zhou, , and A. M. Duan, 2012: Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data. Chin. Sci. Bull., 57, 548557, doi:10.1007/s11434-011-4838-8.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., , and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analysis. Mon. Wea. Rev., 110, 481485, doi:10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effect. J. Atmos. Sci., 40, 21102124, doi:10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, M., , S. Yang, , W. Higgins, , and R. Zhang, 2011: Characteristics of the dominant modes of atmospheric quasi-biweekly oscillation over tropical–subtropical Americas. J. Climate, 24, 39563970, doi:10.1175/2011JCLI3916.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G., , and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, G., , Y. Liu, , B. He, , Q. Bao, , A. Duan, , and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
  • Xie, A., , Q. Ye, , and L. X. Chen, 1989: The atmospheric oscillations over the Tibetan Plateau and surrounding areas as revealed from OLR data (in Chinese). Acta Meteor. Sin., 47, 272278.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1961: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

  • Yanai, M., , S. Esbensen, , and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budget. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , B. Wang, , B. Wang, , and L. J. Li, 2009: The East Asia-western North Pacific boreal summer intraseasonal oscillation simulated in GAMIL 1.1.1. Adv. Atmos. Sci., 26, 480492, doi:10.1007/s00376-009-0480-7.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , B. Wang, , B. Wang, , and Q. Bao, 2010: Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin. J. Climate, 23, 11461159, doi:10.1175/2009JCLI3005.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , Q. Bao, , B. Wang, , D. Y. Gong, , H. Z. He, , and M. N. Gao, 2014: Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn., 42, 14691486, doi:10.1007/s00382-013-1728-6.

    • Search Google Scholar
    • Export Citation
  • Yang, Q. M., 2009: The 20-30-day oscillation of the global circulation and heavy precipitation over the lower reaches of the reaches of the Yangtze River valley. Sci. China, 52, 14851501, doi:10.1007/s11430-009-0156-2.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuation associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227241.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30-40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229.

    • Search Google Scholar
    • Export Citation
  • Zhang, P. F., , G. P. Li, , X. H. Fu, , Y. M. Liu, , and L. F. Li, 2014: Clustering of Tibetan Plateau vortices by 10–30-day intraseasonal oscillation. Mon. Wea. Rev., 142, 290300, doi:10.1175/MWR-D-13-00137.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , L. X. Chen, , and J. H. He, 2009: A study of the characteristics of the low-frequency circulation over the Tibetan Plateau and its association with precipitation in the Yangtze River valley in 1998. Acta Meteor. Sin., 23, 175190.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., , J. H. He, , and H. M. Xu, 2000: LFO characteristics of meteorological elements over Tibetan Plateau and the relations with regional summer rainfall (in Chinese). J. Nanjing Inst. Meteor., 23, 93100.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., , and C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climatol., 25, 15851609, doi:10.1002/joc.1209.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 24
PDF Downloads 78 78 15

Quasi-Biweekly Oscillation over the Tibetan Plateau and Its Link with the Asian Summer Monsoon

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Intraseasonal variation (ISV) is especially prominent and unique in the Asian summer monsoon region. In this work, the dominant ISV mode over the Tibetan Plateau (TP) in the summer monsoon season (June–August), together with its structure and evolution, is identified using station observations, Global Precipitation Climatology Project precipitation data, and ERA-Interim during 1979–2011. Results indicate that quasi-biweekly oscillation (QBWO) is the dominant mode of ISV over the TP and is significant in terms of the circulation, precipitation, and diabatic heating fields. In particular, the QBWO is closely related to the onset and active/break phases of the TP summer monsoon. In most cases, the QBWO originates from the equatorial western Pacific and first propagates northwestward to the Bay of Bengal and northern India, then northward to the southeastern TP, and finally eastward to the East Asian area, showing a clockwise propagation pathway. Two main mechanisms are responsible for the northward propagation of the QBWO signals. The first, in operation when the QBWO signals are located to the south of 20°N, is the generation of barotropic vorticity induced by the easterly vertical shear, leading to the northward movement of the convection. The second mechanism, responsible for the propagation taking place farther north toward the TP, is a moisture advection effect that destabilizes the lower atmosphere ahead of the convection. Further analyses suggest that the QBWO plays a role in linking the ISV of the different subsystems of the Asian summer monsoon as a macroscale monsoon system.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00658.s1.

Corresponding author address: Dr. Anmin Duan, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: amduan@lasg.iap.ac.cn

Abstract

Intraseasonal variation (ISV) is especially prominent and unique in the Asian summer monsoon region. In this work, the dominant ISV mode over the Tibetan Plateau (TP) in the summer monsoon season (June–August), together with its structure and evolution, is identified using station observations, Global Precipitation Climatology Project precipitation data, and ERA-Interim during 1979–2011. Results indicate that quasi-biweekly oscillation (QBWO) is the dominant mode of ISV over the TP and is significant in terms of the circulation, precipitation, and diabatic heating fields. In particular, the QBWO is closely related to the onset and active/break phases of the TP summer monsoon. In most cases, the QBWO originates from the equatorial western Pacific and first propagates northwestward to the Bay of Bengal and northern India, then northward to the southeastern TP, and finally eastward to the East Asian area, showing a clockwise propagation pathway. Two main mechanisms are responsible for the northward propagation of the QBWO signals. The first, in operation when the QBWO signals are located to the south of 20°N, is the generation of barotropic vorticity induced by the easterly vertical shear, leading to the northward movement of the convection. The second mechanism, responsible for the propagation taking place farther north toward the TP, is a moisture advection effect that destabilizes the lower atmosphere ahead of the convection. Further analyses suggest that the QBWO plays a role in linking the ISV of the different subsystems of the Asian summer monsoon as a macroscale monsoon system.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00658.s1.

Corresponding author address: Dr. Anmin Duan, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: amduan@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 2.58 MB)
Save