• Andrews, D., , J. Holton, , and C. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, E. L., , B. A. Ridley, , and C. A. Cantrell, 2003: The Tropospheric Ozone Production about the Spring Equinox (TOPSE) experiment: Introduction. J. Geophys. Res.,108, 8353, doi:10.1029/2002JD003172.

  • Barnes, E. A., , and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barrie, L. A., 1986: Arctic air pollution: An overview of current knowledge. Atmos. Environ.,20, 643–663.

  • Bengtsson, L., , K. I. Hodges, , and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , F. Fierli, , E. J. Jensen, , S. Honomichl, , and L. L. Pan, 2013: Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J. Geophys. Res. Atmos., 118, 25602575, doi:10.1002/jgrd.50142.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , L. C. Shaffrey, , and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352, doi:10.1175/2011JCLI4181.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K., , Y. Guo, , and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res.,117, D23118, doi:10.1029/2012JD018578.

  • Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res.,100 (D8), 16 661–16 673, doi:10.1029/95JD01264.

  • Delcambre, S. C., , D. J. Lorenz, , D. J. Vimont, , and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twentieth-century intermodel variability. J. Climate, 26, 49104929, doi:10.1175/JCLI-D-12-00337.1.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., , C. J. Weaver, , R. B. Rood, , and L. Coy, 1996: A three-dimensional simulation of the ozone annual cycle using winds from a data assimilation system. J. Geophys. Res.,101 (D1), 1463–1474, doi:10.1029/95JD02601.

  • Duncan, B., , and I. Bey, 2004: A modeling study of the export pathways of pollution from Europe: Seasonal and interannual variations (1987–1997). J. Geophys. Res.,109, D08301, doi:10.1029/2003JD004079.

  • Eckhardt, S., , A. Stohl, , H. Wernli, , P. James, , C. Forster, , and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., , and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787789, doi:10.1038/nature04636.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W., , and T. M. Hall, 2002: A generalized transport theory: Water-mass composition and age. J. Phys. Oceanogr., 32, 19321946, doi:10.1175/1520-0485(2002)032<1932:AGTTWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101, 423428, doi:10.1073/pnas.2237157100.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci., 57, 35393558, doi:10.1175/1520-0469(2000)057<3539:TTATAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , and G. J. Boer, 2001: Simulated changes in atmospheric transport climate. J. Climate, 14, 43984420, doi:10.1175/1520-0442(2001)014<4398:SCIATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , and F. W. Primeau, 2010: Improved constraints on transit time distributions from argon 39: A maximum entropy approach. J. Geophys. Res.,115, C12021, doi:10.1029/2010JC006410.

  • Holzer, M., , F. W. Primeau, , W. M. Smethie, , and S. Khatiwala, 2010: Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. J. Geophys. Res.,115, C07005, doi:10.1029/2009JC005750.

  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Iversen, T., , and E. Joranger, 1985: Arctic air pollution and large scale atmospheric flows. Atmos. Environ.,19, 2099–2108, doi:10.1016/0004-6981(85)90117-9.

  • Khatiwala, S., , F. Primeau, , and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346349, doi:10.1038/nature08526.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., , F. Primeau, , and M. Holzer, 2012: Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett., 325–326, 116125, doi:10.1016/j.epsl.2012.01.038.

    • Search Google Scholar
    • Export Citation
  • Klonecki, A., , P. Hess, , L. Emmons, , L. Smith, , J. Orlando, , and D. Blake, 2003: Seasonal changes in the transport of pollutants into the Arctic troposphere-model study. J. Geophys. Res.,108, 8367, doi:10.1029/2002JD002199.

  • Lambert, S. J., , and J. C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from models participating in the IPCC diagnostic exercise. Climate Dyn., 26, 713728, doi:10.1007/s00382-006-0110-3.

    • Search Google Scholar
    • Export Citation
  • Law, K. S., , and A. Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315, 15371540, doi:10.1126/science.1137695.

  • Li, Q., and et al. , 2005: North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. J. Geophys. Res.,110, D10301, doi:10.1029/2004JD005039.

  • Lin, S.-J., , and R. B. Rood, 1996: Multi-dimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070, doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., , and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453456, doi:10.1038/nature04449.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., , H. Wernli, , H. Joos, , and O. Martius, 2014: Warm conveyor belts in the ERA-interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E., , and A. Molod, 2014: Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions. Atmos. Chem. Phys. Discuss., 14, 65896617, doi:10.5194/acpd-14-6589-2014.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Miller, R., , G. Schmidt, , and D. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res.,111, D18101, doi:10.1029/2005JD006323.

  • Mitchell, J., 1957: Visual range in the polar regions with particular reference to the Alaskan Arctic. J. Atmos. Terr. Phys., Suppl. 1, 195211.

    • Search Google Scholar
    • Export Citation
  • Molod, A., , L. Takacs, , M. Suarez, , J. Bacmeister, , I.-S. Song, , and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. NASA/TM-2012-104606, Vol 28, 115 pp.

  • Moore, G., 2012: A new look at Greenland flow distortion and its impact on barrier flow, tip jets and coastal oceanography. Geophys. Res. Lett., 39, L22806, doi:10.1029/2012GL054017.

    • Search Google Scholar
    • Export Citation
  • Moore, G., , and I. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18, 37133725, doi:10.1175/JCLI3455.1.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp.

  • Orbe, C., , M. Holzer, , L. M. Polvani, , and D. Waugh, 2013: Air-mass origin as a diagnostic of tropospheric transport. J. Geophys. Res., 118, 14591470, doi:10.1002/jgrd.50133.

    • Search Google Scholar
    • Export Citation
  • Ott, L., , S. Pawson, , and J. Bacmeister, 2011: An analysis of the impact of convective parameter sensitivity on simulated global atmospheric CO distributions. J. Geophys. Res., 116, D21310, doi:10.1029/2011JD016077.

    • Search Google Scholar
    • Export Citation
  • Park, M., , W. J. Randel, , D. E. Kinnison, , R. R. Garcia, , and W. Choi, 2004: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res.,109, D03302, doi:10.1029/2003JD003706.

  • Pawson, S., , R. S. Stolarski, , A. R. Douglass, , P. A. Newman, , J. E. Nielsen, , S. M. Frith, , and M. L. Gupta, 2008: Goddard Earth Observing System Chemistry-Climate Model simulations of stratospheric ozone–temperature coupling between 1950 and 2005. J. Geophys. Res.,113, D12103, doi:10.1029/2007JD009511.

  • Raatz, W. E., , and G. E. Shaw, 1984: Long-range tropospheric transport of pollution aerosols into the Alaskan Arctic. J. Climate Appl. Meteor., 23, 10521064, doi:10.1175/1520-0450(1984)023<1052:LRTTOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rahn, K. A., , and R. J. McCaffrey, 1980: On the origin and transport of the winter Arctic aerosol. Ann. N. Y. Acad. Sci., 338, 486503, doi:10.1111/j.1749-6632.1980.tb17142.x.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res.,111, D12314, doi:10.1029/2005JD006490.

  • Rienecker, M. M., and et al. , 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM-2008-104606, Vol. 27, 97 pp.

  • Rosenlof, K. H., , A. F. Tuck, , K. K. Kelly, , J. M. Russell, , and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res.,102 (D11), 13 213–13 234, doi:10.1029/97JD00873.

  • Sampe, T., , and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, doi:10.1175/BAMS-88-12-1965.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Q. Fu, , W. J. Randel, , and T. J. Reichler, 2007: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and et al. , 2008: A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys., 8, 53535372, doi:10.5194/acp-8-5353-2008.

    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., , S. Gray, , and S. Belcher, 2008: Boundary-layer ventilation by baroclinic life cycles. Quart. J. Roy. Meteor. Soc., 134, 14091424, doi:10.1002/qj.293.

    • Search Google Scholar
    • Export Citation
  • Škerlak, B., , M. Sprenger, , and H. Wernli, 2014: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys., 14, 913937, doi:10.5194/acp-14-913-2014.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., , and H. Wernli, 2003: A Northern Hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J. Geophys. Res.,108, 8521, doi:10.1029/2002JD002636.

  • Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res.,111, D11306, doi:10.1029/2005JD006888.

  • Tomczak, M., 1981: A multi-parameter extension of TS-diagram techniques for the analysis of non-isopycnal mixing. Prog. Oceanogr., 10, 147171, doi:10.1016/0079-6611(81)90010-0.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., , and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , E. P. Gerber, , and L. M. Polvani, 2012: Abrupt circulation responses to tropical upper-tropospheric warming in a relatively simple stratosphere-resolving AGCM. J. Climate, 25, 40974115, doi:10.1175/JCLI-D-11-00166.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2007: Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project Rep. 50, World Meteorological Organization, 572 pp.

  • Wu, Y., , M. Ting, , R. Seager, , H.-P. Huang, , and M. A. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 5372, doi:10.1007/s00382-010-0776-4.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 13
PDF Downloads 26 26 6

Airmass Origin in the Arctic. Part I: Seasonality

View More View Less
  • 1 * Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland
  • | 3 Department of Applied Mathematics, School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
  • | 4 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 5 Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland
  • | 6 ** Lamont Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

The first climatology of airmass origin in the Arctic is presented in terms of rigorously defined airmass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) reveal that the majority of air in the Arctic below 700 mb last contacted the PBL poleward of 60°N. By comparison, 62% (±0.8%) of the air above 700 mb originates over Northern Hemisphere midlatitudes (i.e., “midlatitude air”). Seasonal variations in the airmass fractions above 700 mb reveal that during boreal winter air from midlatitudes originates primarily over the oceans, with 26% (±1.9%) last contacting the PBL over the eastern Pacific, 21% (±0.87%) over the Atlantic, and 16% (±1.2%) over the western Pacific. During summer, by comparison, midlatitude air originates primarily over land, overwhelmingly so over Asia [41% (±1.0%)] and, to a lesser extent, over North America [24% (±1.5%)]. Seasonal variations in the airmass fractions are interpreted in terms of changes in the large-scale ventilation of the midlatitude boundary layer and the midlatitude tropospheric jet.

Corresponding author address: Clara Orbe, Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: clara.orbe@nasa.gov

Abstract

The first climatology of airmass origin in the Arctic is presented in terms of rigorously defined airmass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) reveal that the majority of air in the Arctic below 700 mb last contacted the PBL poleward of 60°N. By comparison, 62% (±0.8%) of the air above 700 mb originates over Northern Hemisphere midlatitudes (i.e., “midlatitude air”). Seasonal variations in the airmass fractions above 700 mb reveal that during boreal winter air from midlatitudes originates primarily over the oceans, with 26% (±1.9%) last contacting the PBL over the eastern Pacific, 21% (±0.87%) over the Atlantic, and 16% (±1.2%) over the western Pacific. During summer, by comparison, midlatitude air originates primarily over land, overwhelmingly so over Asia [41% (±1.0%)] and, to a lesser extent, over North America [24% (±1.5%)]. Seasonal variations in the airmass fractions are interpreted in terms of changes in the large-scale ventilation of the midlatitude boundary layer and the midlatitude tropospheric jet.

Corresponding author address: Clara Orbe, Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: clara.orbe@nasa.gov
Save