• Barnston, A. G., , M. K. Tippett, , M. L. L’Heureux, , S. Li, , and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., , and Y. Hochberg, 1995: Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300.

    • Search Google Scholar
    • Export Citation
  • Biondi, F., , A. Gershunov, , and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 510, doi:10.1175/1520-0442(2001)014<0005:NPDCVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boé, J., , and F. Habets, 2014: Multi-decadal river flow variations in France. Hydrol. Earth Syst. Sci., 18, 691708, doi:10.5194/hess-18-691-2014.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , P. van Rensch, , T. Cowan, , and A. Sullivan, 2010: Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Climate, 23, 4944–4955, doi:10.1175/2010JCLI3501.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , P. van Rensch, , T. Cowan, , and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 3910–3923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 2004: The evolution of El Niño, past and future. Earth Planet. Sci. Lett., 230, 227–240, doi:10.1016/j.epsl.2004.12.003.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , S. E. Zebiak, , and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, doi:10.1038/321827a0.

  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, doi:10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., , R. Villalba, , and G. Wiles, 2001: Tree-ring estimates of Pacific decadal climate variability. Climate Dyn., 18, 219–224, doi:10.1007/s003820100177.

    • Search Google Scholar
    • Export Citation
  • Dieppois, B., , A. Durand, , M. Fournier, , and N. Massei, 2013: Links between multidecadal and interdecadal climatic oscillations in the North Atlantic and regional climate variability of northern France and England since the 17th century. J. Geophys. Res. Atmos., 118, 43594372, doi:10.1002/jgrd.50392.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., doi:10.1007/s00382-015-2500-x, in press.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A., , and S. G. H. Philander, 2000: Is El Niño changing? Science, 288, 1997–2002, doi:10.1126/science.288.5473.1997.

  • Franks, S. W., , and G. Kuczera, 2002: Flood frequency analysis: Evidence and implications of secular climate variability, New South Wales. Water Resour. Res., 38 (5), doi:10.1029/2001WR000232.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., , and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., , S. J. Mason, , S. E. Zebiak, , C. F. Ropelewski, , R. Basher, , and M. A. Cane, 2001: Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol., 21, 11111152, doi:10.1002/joc.636.

    • Search Google Scholar
    • Export Citation
  • Gu, D., , and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805–807, doi:10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., , M. A. Thyer, , G. Kuczera, , and S. W. Franks, 2011: Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data. Water Resour. Res., 47, W11509, doi:10.1029/2010WR010034.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., , M. A. Thyer, , and G. Kuczera, 2013: Climate driver informed short-term drought risk evaluation. Water Resour. Res., 49, 23172326, doi:10.1002/wrcr.20222.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ishak, E. H., , A. Rahman, , S. Westra, , A. Sharma, , and G. Kuczera, 2013: Evaluating the non-stationarity of Australian annual maximum flood. J. Hydrol., 494, 134145, doi:10.1016/j.jhydrol.2013.04.021.

    • Search Google Scholar
    • Export Citation
  • Jain, S., , and U. Lall, 2001: Floods in a changing climate: Does the past represent the future? Water Resour. Res., 37, 31933205, doi:10.1029/2001WR000495.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. Clement, , M. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–18 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Khedun, C. P., , A. K. Mishra, , V. P. Singh, , and J. R. Giardino, 2014: A copula-based precipitation forecast model: Investigating the interdecadal modulation of ENSO’s impact on monthly precipitation. Water Resour. Res., 50, 580–600, doi:10.1002/2013WR013763.

    • Search Google Scholar
    • Export Citation
  • Kiem, A. S., , S. W. Franks, , and G. Kuczera, 2003: Multi-decadal variability of flood risk. Geophys. Res. Lett., 30, 1035, doi:10.1029/2002GL015992.

    • Search Google Scholar
    • Export Citation
  • King, A. D., , L. V. Alexander, , and M. G. Donat, 2013: Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett., 40, 22712277, doi:10.1002/grl.50427.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and et al. , 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 953–1028.

  • Latif, M., and et al. , 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393, doi:10.1029/97JC03413.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995, doi:10.1175/2011JCLI3980.1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Q. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., , J. T. Kent, , and J. M. Bibby, 1976: Multivariate Analysis. Academic Press, 521 pp.

  • McPhaden, M. J., , S. E. Zebiak, , and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 1740–1745, doi:10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , T. Lee, , and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Micevski, T., , S. W. Franks, , and G. Kuczera, 2006: Multidecadal variability in coastal eastern Australian flood data. J. Hydrol., 327, 219225, doi:10.1016/j.jhydrol.2005.11.017.

    • Search Google Scholar
    • Export Citation
  • Neelin, D. J., , D. S. Battisti, , A. C. Hirst, , F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103C, 14 26114 290, doi:10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., , and K. K. Wong, 1990: Dependence of rainfall variability on mean rainfall, latitude, and the Southern Oscillation. J. Climate, 3, 163170, doi:10.1175/1520-0442(1990)003<0163:DORVOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and D. L. T. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793, doi:10.1002/qj.49712051802.

    • Search Google Scholar
    • Export Citation
  • Park, J., , and M. E. Mann, 2000: Interannual temperature shifts and shifts in global temperature: A “multiwavelet” correlation approach. Earth Interact., 4, 1–36, doi:10.1175/1087-3562(2000)004<0001:ITEASI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., and et al. , 2007: Decadal to multidecadal climate variability and predictability and the background of climate change. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Pathiraja, S., , S. Westra, , and A. Sharma, 2012: Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour. Res., 48, W06534, doi:10.1029/2011WR010997.

    • Search Google Scholar
    • Export Citation
  • Power, S., , and R. Colman, 2006: Multi-year predictability in a coupled general circulation model. Climate Dyn., 26, 247272, doi:10.1007/s00382-005-0055-y.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Power, S., , M. Haylock, , R. Colman, , and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19, 4755–4771.

    • Search Google Scholar
    • Export Citation
  • Pui, A., , A. Lal, , and A. Sharma, 2011: How does the Interdecadal Pacific Oscillation affect design floods in Australia? Water Resour. Res., 47, W05554, doi:10.1029/2010WR009420.

    • Search Google Scholar
    • Export Citation
  • Qian, B., , J. Corte-Real, , and H. Xu, 2000: Is the North Atlantic Oscillation the most important atmospheric pattern for precipitation in Europe? J. Geophys. Res., 105, 11 90111 910, doi:10.1029/2000JD900102.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., , M. E. Mann, , and U. Lall, 1998: A multivariate frequency-domain approach to long-lead climatic forecasting. Wea. Forecasting, 13, 5874, doi:10.1175/1520-0434(1998)013<0058:AMFDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , X. L. Wang, , and C. F. Ropelewski, 1994: Secular variability of the ENSO cycle. Natural Climate Variability on Decade-to-Century Time Scales, National Academies Press, 458–470.

  • Rayner, N. A., and et al. , 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 data set. J. Climate, 19, 446469, doi:10.1175/JCLI3637.1.

    • Search Google Scholar
    • Export Citation
  • Renard, B., and et al. , 2008: Regional methods for trend detection: Assessing field significance and regional consistency. Water Resour. Res., 44, W08419, doi:10.1029/2007WR006268.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C., , and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , A. Becker, , P. Finger, , A. Meyer-Christoffer, , B. Rudolf, , and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 2.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Accessed February 2014, doi:10.5676/DWD_GPCC/FD_M_V6_250.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , A. Becker, , P. Finger, , A. Meyer-Christoffer, , M. Ziese, , and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, X., , M. Thyer, , B. Renard, , and M. A. Lang, 2014: A general regional frequency analysis framework for quantifying local-scale climate effects: A case study of ENSO effects on southeast Queensland rainfall. J. Hydrol., 512, 5368, doi:10.1016/j.jhydrol.2014.02.025.

    • Search Google Scholar
    • Export Citation
  • Thyer, M., , A. J. Frost, , and G. Kuczera, 2006: Parameter estimation and model identification for stochastic models of annual hydrological data: Is the observed record long enough? J. Hydrol., 330, 313328, doi:10.1016/j.jhydrol.2006.03.029.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N.-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103C, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Ventura, V., , C. J. Paciorek, , and J. S. Risbey, 2004: Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate, 17, 43434356, doi:10.1175/3199.1.

    • Search Google Scholar
    • Export Citation
  • Verdon, D. C., , A. M. Wyatt, , A. S. Kiem, , and S. W. Franks, 2004: Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour. Res., 40, W10201, doi:10.1029/2004WR003234.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1924: Correlation in seasonal variations of weather, IX: A further study of world weather. Mem. India Meteor. Dept.,24, 275–332.

  • Walland, D., , S. Power, , and A. Hirst, 2000: Decadal climate variability in the CSIRO coupled general circulation model. Climate Dyn., 16, 201211, doi:10.1007/s003820050013.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and S.-I. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles and background wind changes. Climate Dyn., 18, 475486, doi:10.1007/s00382-001-0189-5.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., , and C. F. Ropelewski, 1995: An assessment of ENSO-scale secular variability. J. Climate, 8, 15841599, doi:10.1175/1520-0442(1995)008<1584:AAOESS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westra, S., , and A. Sharma, 2010: An upper limit to seasonal rainfall predictability? J. Climate, 23, 33323351, doi:10.1175/2010JCLI3212.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model for the El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , J. Perlwitz, , and M. Hoerling, 2014: What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys. Res. Lett., 41, 10191025, doi:10.1002/2013GL058964.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1990–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 55
PDF Downloads 71 71 23

The ENSO–Precipitation Teleconnection and Its Modulation by the Interdecadal Pacific Oscillation

View More View Less
  • 1 School of Civil, Environmental, and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia
  • | 2 Irstea Lyon-Villeurbanne, UR HHLY Hydrology-Hydraulics, Lyon, France
  • | 3 School of Civil, Environmental, and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia
© Get Permissions
Restricted access

Abstract

This study evaluates the role of the interdecadal Pacific oscillation (IPO) in modulating the El Niño–Southern Oscillation (ENSO)–precipitation relationship. The standard IPO index is described together with several alternatives that were derived using a low-frequency ENSO filter, demonstrating that an equivalent IPO index can be obtained as a low-frequency version of ENSO. Several statistical artifacts that arise from using a combination of raw and smoothed ENSO indices in modeling the ENSO–precipitation teleconnection are then described. These artifacts include the potentially spurious identification of low-frequency variability in a response variable resulting from the use of smoothed predictors and the potentially spurious modulation of a predictor–response relationship by the low-frequency version of the predictor under model misspecification. The role of the IPO index in modulating the ENSO–precipitation relationship is evaluated using a global gridded precipitation dataset, based on three alternative statistical models: stratified, linear, and piecewise linear. In general, the information brought by the IPO index, beyond that already contained in the Niño-3.4 index, is limited and not statistically significant. An exception is in northeastern Australia using annual precipitation data, and only for the linear model. Stratification by the IPO index induces a nonlinear ENSO–precipitation relationship, suggesting that the apparent modulation by the IPO is likely to be spurious and attributable to the combination of sample stratification and model misspecification. Caution is therefore required when using smoothed climate indices to model or explain low-frequency variability in precipitation.

Corresponding author address: Seth Westra, School of Civil, Environmental, and Mining Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia. E-mail: seth.westra@adelaide.edu.au

Abstract

This study evaluates the role of the interdecadal Pacific oscillation (IPO) in modulating the El Niño–Southern Oscillation (ENSO)–precipitation relationship. The standard IPO index is described together with several alternatives that were derived using a low-frequency ENSO filter, demonstrating that an equivalent IPO index can be obtained as a low-frequency version of ENSO. Several statistical artifacts that arise from using a combination of raw and smoothed ENSO indices in modeling the ENSO–precipitation teleconnection are then described. These artifacts include the potentially spurious identification of low-frequency variability in a response variable resulting from the use of smoothed predictors and the potentially spurious modulation of a predictor–response relationship by the low-frequency version of the predictor under model misspecification. The role of the IPO index in modulating the ENSO–precipitation relationship is evaluated using a global gridded precipitation dataset, based on three alternative statistical models: stratified, linear, and piecewise linear. In general, the information brought by the IPO index, beyond that already contained in the Niño-3.4 index, is limited and not statistically significant. An exception is in northeastern Australia using annual precipitation data, and only for the linear model. Stratification by the IPO index induces a nonlinear ENSO–precipitation relationship, suggesting that the apparent modulation by the IPO is likely to be spurious and attributable to the combination of sample stratification and model misspecification. Caution is therefore required when using smoothed climate indices to model or explain low-frequency variability in precipitation.

Corresponding author address: Seth Westra, School of Civil, Environmental, and Mining Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia. E-mail: seth.westra@adelaide.edu.au
Save