• Adam, O., , T. Schneider, , and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, doi:10.1175/JCLI-D-14-00140.1.

    • Search Google Scholar
    • Export Citation
  • Allen, M., , and P. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477491, doi:10.1007/s00382-003-0313-9.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., , S. C. Sherwood, , J. R. Norris, , and C. S. Zender, 2012: Recent northern hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, doi:10.1038/nature11097.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., , J. R. Norris, , and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat. Geosci., 7, 270274, doi:10.1038/ngeo2091.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., , J. M. Gregory, , M. J. Webb, , and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and et al. , 2008: Human-induced changes in the hydrology of the western United States. Science,319, 1080–1083, 10.1126/science.1152538.

  • Bellomo, K., , A. C. Clement, , J. R. Norris, , and B. J. Soden, 2014: Observational and model estimates of cloud amount feedback over the Indian and Pacific Oceans. J. Climate, 27, 925–940, doi:10.1175/JCLI-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A., , V. Ramanathan, , and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445–3482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , M. D. Zelinka, , and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett.,41, 3244–3250, doi:10.1002/2014GL060043.

  • Davis, S. M., , and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, doi:10.1175/JCLI-D-11-00127.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, doi:10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., , S. G. Warren, , and C. J. Hahn, 2011: Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Climate, 24, 5914–5934, doi:10.1175/2011JCLI3972.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , A. K. Heidinger, , and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Gillett, N., , F. Zwiers, , A. Weaver, , G. Hegerl, , M. Allen, , and P. Stott, 2002: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett., 29, 1970, doi:10.1029/2002GL015836.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and L. M. Polvani, 2014: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate,27, 6074–6092, doi:10.1175/JCLI-D-14-00113.1.

  • Hansen, J., , A. Lacis, , D. Rind, , G. Russell, , P. Stone, , I. Fung, , R. Ruedy, , and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

  • Hartmann, D. L., , and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1979: On the signal-to-noise problem in atmospheric response studies. Meteorology of Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 251–259.

  • Hawkins, E., , and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.

  • Hegerl, G. C., , H. von Storch, , K. Hasselmann, , B. D. Santer, , U. Cubasch, , and P. D. Jones, 1996: Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Climate, 9, 22812306, doi:10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, doi:10.1175/2008JAMC1882.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , A. T. Evan, , M. J. Foster, , and A. Walther, 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 1129–1144, doi:10.1175/JAMC-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , M. J. Foster, , A. Walther, , and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909–922, doi:10.1175/BAMS-D-12-00246.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., , and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, doi:10.1175/2008JCLI2620.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J., , B. Medeiros, , Y.-T. Hwang, , A. Gettelman, , J. Perket, , and M. Flanner, 2014: Processes controlling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616622, doi:10.1002/2013GL058315.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levy, A. A., , W. Ingram, , M. Jenkinson, , C. Huntingford, , F. H. Lambert, , and M. Allen, 2013: Can correcting feature location in simulated mean climate improve agreement on projected changes? Geophys. Res. Lett., 40, 354358, doi:10.1002/2012GL053964.

    • Search Google Scholar
    • Export Citation
  • Levy, A. A., , M. Jenkinson, , W. Ingram, , F. H. Lambert, , C. Huntingford, , and M. Allen, 2014: Increasing the detectability of external influence on precipitation by correcting feature location in GCMs. J. Geophys. Res. Atmos., 119, 12 466–12 478, doi:10.1002/2014JD02235.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and et al. , 2007: Multi-instrument comparison of top-of-atmosphere reflected solar radiation. J. Climate, 20, 575591, doi:10.1175/JCLI4018.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , B. Timbal, , and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, doi:10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., , R. Knutti, , S. Solomon, , and R. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett.,6, 034009, doi:10.1088/1748-9326/6/3/034009.

  • Marvel, K., , and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 30119 306, doi:10.1073/pnas.1314382110.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., , and S.-W. Son, 2013: Multi-model attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. J. Geophys. Res. Atmos., 118, 3007–3015, doi:10.1002/jgrd.50232.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12, 1864–1870, doi:10.1175/1520-0442(1999)012<1864:OTAPAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2007: Observed interdecadal changes in cloudiness: Real or spurious? Climate Variability and Extremes during the Past 100 Years, S. Brönnimann et al., Eds., Springer, 169–178.

  • Norris, J. R., , and A. T. Evan, 2015: Empirical removal of artifacts from the ISCCP and PATMOS-x satellite cloud records. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-14-00058.1, in press.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , S. Platnick, , S. A. Ackerman, , R. S. Hemler, , and R. J. Patrick Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 4699–4720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., , M. P. Hoerling, , J. Perlwitz, , H. F. Diaz, , and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, doi:10.1175/JCLI-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , U. Mikolajewicz, , W. Brüggemann, , U. Cubasch, , K. Hasselmann, , H. Höck, , E. Maier-Reimer, , and T. M. Wigley, 1995: Ocean variability and its influence on the detectability of greenhouse warming signals. J. Geophys. Res.,100, 10 693–10 725, doi:10.1029/95JC00683.

  • Santer, B. D., and et al. , 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483, doi:10.1126/science.1084123.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15 24815 253, doi:10.1073/pnas.0702872104.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2013: Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA, 110, 2633, doi:10.1073/pnas.1210514109.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., , and D. Frierson, 2012: Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Climate, 25, 43304347, doi:10.1175/JCLI-D-11-00393.1.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Q. Fu, , W. J. Randel, , and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., , and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, doi:10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273, doi:10.1175/JCLI-3243.1.

  • Stott, P. A., , S. Tett, , G. Jones, , M. Allen, , J. Mitchell, , and G. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcings. Science, 290, 21332137, doi:10.1126/science.290.5499.2133.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C., and et al. , 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tett, S. F., and et al. , 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107, 4306, doi:10.1029/2000JD000028.

    • Search Google Scholar
    • Export Citation
  • Tian, L., , and J. A. Curry, 1989: Cloud overlap statistics. J. Geophys. Res.,94, 9925–9935, doi:10.1029/JD094iD07p09925.

  • van Vuuren, D. P., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Vial, J., , J.-L. Dufresne, , and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Weatherhead, E. C., and et al. , 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res.,103, 17 149–17 161, doi:10.1029/98JD00995.

  • Webb, M., , C. Senior, , S. Bony, , and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, doi:10.1007/s003820100157.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R., , and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and et al. , 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, doi:10.1175/BAMS-D-12-00149.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , and D. L. Hartmann, 2011: The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J. Geophys. Res.,116, D23103, doi:10.1029/2011JD016459.

  • Zelinka, M. D., , S. A. Klein, , K. E. Taylor, , T. Andrews, , M. J. Webb, , J. M. Gregory, , and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 5007–5027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 20
PDF Downloads 71 71 17

External Influences on Modeled and Observed Cloud Trends

View More View Less
  • 1 Lawrence Livermore National Laboratory, Livermore, California, and NASA Goddard Institute for Space Studies, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 2 Lawrence Livermore National Laboratory, Livermore, California
© Get Permissions
Restricted access

Abstract

Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP and PATMOS-x. The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.

Corresponding author address: Kate Marvel, NASA Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: katherine.d.marvel@nasa.gov

Abstract

Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP and PATMOS-x. The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.

Corresponding author address: Kate Marvel, NASA Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: katherine.d.marvel@nasa.gov
Save