Climate-Driven Variability in the Southern Ocean Carbonate System

Christopher J. Conrad Department of Atmospheric and Oceanic Sciences, and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Christopher J. Conrad in
Current site
Google Scholar
PubMed
Close
and
Nicole S. Lovenduski Department of Atmospheric and Oceanic Sciences, and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Nicole S. Lovenduski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal and interannual variability in the Southern Ocean carbonate system is investigated using output from a historically forced (1948–2007) ocean general circulation model with embedded biogeochemistry. Atmospheric CO2 is fixed at preindustrial levels to investigate carbonate system variability in the absence of an anthropogenic CO2 perturbation. It is found that nearly a quarter of interannual variability in Southern Ocean Pacific sector surface carbonate ion concentration can be explained by variability in ENSO, with Pacific sector surface decreasing by 0.43 mmol m−3 per standard deviation decrease in the ENSO-3.4 index. ENSO-related variability in vertical advection of dissolved inorganic carbon (DIC) drives this relationship between ENSO and surface . It is also found that positive phases of the southern annular mode (SAM) are associated with decreased Southern Ocean surface , an association driven by SAM-related variability in vertical advection of DIC. Despite the influence of the SAM on interannual variability in surface , only 4.5% of the trend in natural Southern Ocean surface exhibits linear congruence with the trend in wind stress. Given this, the authors predict that the positive trend in the SAM will not have a substantial impact on ocean acidification. Last, ENSO is found to alter the wintertime minimum in surface . Assuming a business-as-usual acidification rate of 0.5 mmol m−3 yr−1, exacerbation of the wintertime minimum during La Niña conditions may advance the date of aragonite undersaturation within the central Pacific sector of the Southern Ocean by as much as 8 yr.

Corresponding author address: Christopher J. Conrad, Institute of Arctic and Alpine Research, Campus Box 450, University of Colorado, Boulder, CO 80309-0450. E-mail: christopher.j.conrad@colorado.edu

Abstract

Seasonal and interannual variability in the Southern Ocean carbonate system is investigated using output from a historically forced (1948–2007) ocean general circulation model with embedded biogeochemistry. Atmospheric CO2 is fixed at preindustrial levels to investigate carbonate system variability in the absence of an anthropogenic CO2 perturbation. It is found that nearly a quarter of interannual variability in Southern Ocean Pacific sector surface carbonate ion concentration can be explained by variability in ENSO, with Pacific sector surface decreasing by 0.43 mmol m−3 per standard deviation decrease in the ENSO-3.4 index. ENSO-related variability in vertical advection of dissolved inorganic carbon (DIC) drives this relationship between ENSO and surface . It is also found that positive phases of the southern annular mode (SAM) are associated with decreased Southern Ocean surface , an association driven by SAM-related variability in vertical advection of DIC. Despite the influence of the SAM on interannual variability in surface , only 4.5% of the trend in natural Southern Ocean surface exhibits linear congruence with the trend in wind stress. Given this, the authors predict that the positive trend in the SAM will not have a substantial impact on ocean acidification. Last, ENSO is found to alter the wintertime minimum in surface . Assuming a business-as-usual acidification rate of 0.5 mmol m−3 yr−1, exacerbation of the wintertime minimum during La Niña conditions may advance the date of aragonite undersaturation within the central Pacific sector of the Southern Ocean by as much as 8 yr.

Corresponding author address: Christopher J. Conrad, Institute of Arctic and Alpine Research, Campus Box 450, University of Colorado, Boulder, CO 80309-0450. E-mail: christopher.j.conrad@colorado.edu
Save
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, doi:10.1175/JCLI3774.1.

    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham, 2001: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II, 49, 219236, doi:10.1016/S0967-0645(01)00101-1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks of the southern annular mode in winter and summer. J. Atmos. Sci., 67, 23202330, doi:10.1175/2010JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Battaglia, B., J. Valencia, and D. W. H. Walton, 1997: Antarctic Communities: Species, Structure, and Survival. Cambridge University Press, 464 pp.

  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. H. Whetton, and D. J. Karoly, 2003: The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J. Climate, 16, 15251538, doi:10.1175/1520-0442-16.10.1525.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and M. E. Wickett, 2003: Oceanography: Anthropogenic carbon and ocean pH. Nature, 425, 365, doi:10.1038/425365a.

  • Ciasto, L. M., and M. H. England, 2011: Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophys. Res. Lett., 38, L09701, doi:10.1029/2011GL046895.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, doi:10.1016/j.ocemod.2007.03.006.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Dickson, A., and C. Goyet, Eds., 1994: Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. Information Analysis Center, Oak Ridge National Laboratory Tech. Rep. ORNL/CDIAC-74, 198 pp., doi:10.2172/10107773.

  • Doney, S. C., K. Lindsay, I. Fung, and J. John, 2006: Natural variability in a stable, 1000-yr global coupled climate–carbon cycle simulation. J. Climate, 19, 30333054, doi:10.1175/JCLI3783.1.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K. Moore, and R. Wanninkhof, 2009: Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res. II, 56, 640655, doi:10.1016/j.dsr2.2008.12.006.

    • Search Google Scholar
    • Export Citation
  • Fabry, V. J., 2009: Ocean acidification at high latitudes: The bellwether. Oceanography, 22, 160171, doi:10.5670/oceanog.2009.105.

  • Farneti, R., and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, doi:10.1016/j.ocemod.2011.02.005.

    • Search Google Scholar
    • Export Citation
  • Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero, 2004: Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362366, doi:10.1126/science.1097329.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, doi:10.1175/JCLI-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2014: Meridional displacement of the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc., 372A, 20130273, doi:10.1098/rsta.2013.0273.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, doi:10.1126/science.1087440.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Griffiths, H. J., 2010: Antarctic marine biodiversity—What do we know about the distribution of life in the Southern Ocean? PloS One,5, e11683, doi:10.1371/journal.pone.0011683.

  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, doi:10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harangozo, S., 2000: A search for ENSO teleconnections in the west Antarctic Peninsula climate in austral winter. Int. J. Climatol., 20, 663679, doi:10.1002/(SICI)1097-0088(200005)20:6<663::AID-JOC493>3.0.CO;2-I.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and N. K. Larkin, 1998: El Niño–Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev. Geophys., 36, 353, doi:10.1029/98RG00715.

    • Search Google Scholar
    • Export Citation
  • Ho, M., A. Kiem, and D. Verdon-Kidd, 2012: The southern annular mode: A comparison of indices. Hydrol. Earth Syst. Sci., 16, 967982, doi:10.5194/hess-16-967-2012.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, doi:10.1175/2007JCLI1925.1.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Key, R., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346349, doi:10.1038/nature08526.

    • Search Google Scholar
    • Export Citation
  • Klaas, C., and D. E. Archer, 2002: Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochem. Cycles, 16, 1116, doi:10.1029/2001GB001765.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, doi:10.1126/science.1225154.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Tagliabue, and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett.,36, L12606, doi:10.1029/2009GL038227.

  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, doi:10.1126/science.1136188.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2013: The World Ocean Database. Data Sci. J., 12, WDS229–WDS234, doi:10.2481/dsj.WDS-041.

  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 67756800, doi:10.1175/JCLI-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, S. C. Doney, and I. D. Lima, 2007: Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the southern annular mode. Global Biogeochem. Cycles, 21, GB2026, doi:10.1029/2006GB002900.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, and S. C. Doney, 2008: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22, GB3016, doi:10.1029/2007GB003139.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., M. C. Long, P. R. Gent, and K. Lindsay, 2013: Multi-decadal trends in the advection and mixing of natural carbon in the Southern Ocean. Geophys. Res. Lett., 40, 139142, doi:10.1029/2012GL054483.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., and A. Lenton, 2008: Impact of historical climate change on the Southern Ocean carbon cycle. J. Climate, 21, 58205834, doi:10.1175/2008JCLI2194.1.

    • Search Google Scholar
    • Export Citation
  • McNeil, B. I., and R. J. Matear, 2008: Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proc. Natl. Acad. Sci. USA,105, 18 860–18 864, doi:10.1073/pnas.0806318105.

  • McNeil, B. I., N. Metzl, R. M. Key, R. J. Matear, and A. Corbiere, 2007: An empirical estimate of the Southern Ocean air–sea CO2 flux. Global Biogeochem. Cycles, 21, GB3011, doi:10.1029/2007GB002991.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., M. R. Abbott, and J. G. Richman, 1999: Location and dynamics of the Antarctic polar front from satellite sea surface temperature data. J. Geophys. Res., 104 (C2), 30593073, doi:10.1029/1998JC900032.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., S. C. Doney, and K. Lindsay, 2004: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Climate, 26, 92919312, doi:10.1175/JCLI-D-12-00566.1.

    • Search Google Scholar
    • Export Citation
  • Najjar, R., and J. Orr, 1998: Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. Internal OCMIP Report, LSCE/CEA Saclay, Gif-sur-Yvette, France, 19 pp. [Available online at http://www.cgd.ucar.edu/oce/klindsay/OCMIP/design.pdf.]

  • Nan, S., and J. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, doi:10.1029/2003GL018381.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and Coauthors, 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681686, doi:10.1038/nature04095.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2004: Southern Ocean sea ice and its wider linkages: insights revealed from models and observations. Antarct. Sci., 16, 387400, doi:10.1017/S0954102004002214.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., I. Simmonds, and J. A. Renwick, 2007: Southern Hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. Int. J. Climatol., 27, 14031419, doi:10.1002/joc.1477.

    • Search Google Scholar
    • Export Citation
  • Priddle, J., and Coauthors, 2003: Biogeochemistry of a Southern Ocean plankton ecosystem: Using natural variability in community composition to study the role of metazooplankton in carbon and nitrogen cycles. J. Geophys. Res., 108, 8082, doi:10.1029/2000JC000425.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM). Los Alamos National Laboratory Rep. LAUR-10-01853, 140 pp.

  • Sprintall, J., T. K. Chereskin, and C. Sweeney, 2012: High-resolution underway upper ocean and surface atmospheric observations in Drake Passage: Synergistic measurements for climate science. Oceanography, 25, 70–81, doi:10.5670/oceanog.2012.77.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and T. J. Hoar, 1997: El Niño and climate change. Geophys. Res. Lett., 24, 30573060, doi:10.1029/97GL03092.

  • Verdy, A., S. Dutkiewicz, M. Follows, J. Marshall, and A. Czaja, 2007: Carbon dioxide and oxygen fluxes in the Southern Ocean: Mechanisms of interannual variability. Global Biogeochem. Cycles, 21, GB2020, doi:10.1029/2006GB002916.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 (C5), 7373–7382, doi:10.1029/92JC00188.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Zeebe, R. E., and D. Wolf-Gladrow, 2002: CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Vol. 36, Elsevier Oceanography Series, 360 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 802 457 16
PDF Downloads 282 75 7