Impacts of External Forcing on the Decadal Climate Variability in CMIP5 Simulations

Yi Song State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Yi Song in
Current site
Google Scholar
PubMed
Close
and
Yongqiang Yu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yongqiang Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Decadal climate variability is usually regarded as an internal variability in the climate system. However, using the coupled simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is demonstrated that the external radiative forcing plays an important role in modulating decadal variability of the global mean surface air temperature (SAT). In historical runs, the standard deviations of the global mean SAT exhibit robust increases relative to preindustrial runs, indicating that external forcing acts on decadal variability of the global mean SAT through enhancing amplitude and modulating phase. By comparing model results using different external forcing agents, it is found that the natural forcing agent has the strongest impact on the decadal time scale. Every type of simulation (i.e., the preindustrial, historical, natural forcing, and anthropogenic forcing runs) from almost all the CMIP5 models exhibits a high correlation between the net shortwave (SW) radiative flux at the top of the atmosphere (TOA) and the global mean SAT with a 13-month lag. However, after taking the multimodel ensemble mean for the TOA SW radiative flux and the SAT, respectively, the correlations from the external forcing runs are much higher than those from preindustrial runs. This is because that the decadal SAT anomalies from multiple models cancel each other out in the preindustrial runs without external forcing but generally follow decadal evolution of the external forcing with a 13-month lag. The most significant regional responses to external forcing are found in the tropical Indian and Pacific Oceans, although with different physical mechanisms for the natural and greenhouse gas forcing agents.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00492.s1.

Corresponding author address: Yongqiang Yu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: yyq@lasg.iap.ac.cn

Abstract

Decadal climate variability is usually regarded as an internal variability in the climate system. However, using the coupled simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is demonstrated that the external radiative forcing plays an important role in modulating decadal variability of the global mean surface air temperature (SAT). In historical runs, the standard deviations of the global mean SAT exhibit robust increases relative to preindustrial runs, indicating that external forcing acts on decadal variability of the global mean SAT through enhancing amplitude and modulating phase. By comparing model results using different external forcing agents, it is found that the natural forcing agent has the strongest impact on the decadal time scale. Every type of simulation (i.e., the preindustrial, historical, natural forcing, and anthropogenic forcing runs) from almost all the CMIP5 models exhibits a high correlation between the net shortwave (SW) radiative flux at the top of the atmosphere (TOA) and the global mean SAT with a 13-month lag. However, after taking the multimodel ensemble mean for the TOA SW radiative flux and the SAT, respectively, the correlations from the external forcing runs are much higher than those from preindustrial runs. This is because that the decadal SAT anomalies from multiple models cancel each other out in the preindustrial runs without external forcing but generally follow decadal evolution of the external forcing with a 13-month lag. The most significant regional responses to external forcing are found in the tropical Indian and Pacific Oceans, although with different physical mechanisms for the natural and greenhouse gas forcing agents.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00492.s1.

Corresponding author address: Yongqiang Yu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: yyq@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 1.22 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cui, X., Y. Gao, J. Sun, D. Guo, S. Li, and O. M. Johannessen, 2014: Role of natural external forcing factors in modulating the Indian summer monsoon rainfall, the winter North Atlantic Oscillation and their relationship on inter-decadal timescale. Climate Dyn., 43, 2283–2295, doi:10.1007/s00382-014-2053-4.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., R. Wilson, and A. Tudhope, 2009: The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat. Geosci., 2, 51–56, doi:10.1038/ngeo393.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481–1495, doi:10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 1993–2011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and X. Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, 8570–8577, doi:10.1002/2014GL062269.

    • Search Google Scholar
    • Export Citation
  • Driscoll, S., A. Bozzo, L. J. Gray, A. Robock, and G. Stenchikov, 2012: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res., 117, D17105, doi:10.1029/2012JD017607.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61, 1004–1023, doi:10.1175/1520-0469(2004)061<1004:OMLTVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676–691, doi:10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222–227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Estrada, F., P. Perron, and B. Martínez-López, 2013: Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat. Geosci., 6, 1050–1055, doi:10.1038/ngeo1999.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2014: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013a: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767–769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., K. von Salzen, J. N. S. Cole, N. P. Gillett, and J.-P. Vernier, 2013b: Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophys. Res. Lett., 40, 584–588, doi:10.1002/grl.50156.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, G. C. Hegerl, M. R. Allen, and P. A. Stott, 2002: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett., 29, 1970, doi:10.1029/2002GL015836.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., F. J. Doblas-Reyes, I. Andreu-Burillo, and M. Asif, 2013: Retrospective prediction of the global warming slowdown in the past decade. Nat. Climate Change, 3, 649–653, doi:10.1038/nclimate1863.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., 1996: The impact of solar variability on climate. Science, 272, 981–984, doi:10.1126/science.272.5264.981.

  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 421–13 449, doi:10.5194/acp-11-13421-2011.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., A. A. Scaife, J. R. Knight, J. C. Manners, N. J. Dunstone, L. J. Gray, J. D. Haigh, 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, doi:10.1038/ngeo1282.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10, 1821–1835, doi:10.1175/1520-0442(1997)010<1821:ATOICV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. E., H. Kauppi, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108, 11 790–11 793, doi:10.1073/pnas.1102467108.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 2181–2199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17, 83–106, doi:10.1007/PL00013736.

    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., and J. D. Neelin, 2013: Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation. J. Climate, 26, 4431–4446, doi:10.1175/JCLI-D-12-00542.1.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8, 952–964, doi:10.1175/1520-0442(1995)008<0952:IOTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 21–33, doi:10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., C. Sun, and F.-F. Jin, 2013: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 5497–5502, doi:10.1002/2013GL057877.

    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, M. A. Cane, S.-Y. Yim, and J.-Y. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656–659, doi:10.1038/nature11784.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 4684–4700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 701–18 706, doi:10.1073/pnas.1210239109.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and W. Liu, 2015: Understanding the El Niño-like oceanic response in the tropical Pacific to global warming. Climate Dyn., doi:10.1007/s00382-014-2448-2, in press.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888–892, doi:10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 56–60, doi:10.1038/382056a0.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2011: Decadal variability of Asian–Australian monsoon–ENSO–TBO relationships. J. Climate, 24, 4925–4940, doi:10.1175/2011JCLI4015.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2012: Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett., 39, L22705, doi:10.1029/2012GL053423.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2014: CMIP5 multi-model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 1711–1716, doi:10.1002/2014GL059256.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780–792, doi:10.1175/2008JCLI2552.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360–364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 7298–7310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 26, 5169–5182, doi:10.1175/JCLI-D-12-00471.1.

    • Search Google Scholar
    • Export Citation
  • OtterÃ¥, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688–694, doi:10.1038/ngeo955.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., D. J. McNeall, and N. J. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett., 38, L13707, doi:10.1029/2011GL047835.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28 033–28 059, doi:10.1029/2000JD000189.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185–189, doi:10.1038/ngeo2098.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2015: Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys. Res. Lett., 42, 500–509, doi:10.1002/2014GL062366.

    • Search Google Scholar
    • Export Citation
  • Sato, M., J. Hansen, M. McCormick, and J. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22 987–22 994, doi:10.1029/93JD02553.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158–160, doi:10.1038/ngeo2105.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, M. E. Mann, D. Rind, and A. Waple, 2001: Solar forcing of regional climate change during the Maunder Minimum. Science, 294, 2149–2152, doi:10.1126/science.1064363.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–1223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Song, Y., Y. Q. Yu, and P. F. Lin, 2014: The hiatus and accelerated warming decades in CMIP5 simulations. Adv. Atmos. Sci., 31, 1316–1330, doi:10.1007/s00376-014-3265-6.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303–319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., and J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110, 2058–2063, doi:10.1073/pnas.1212471110.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009a: Cirene: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 45–61, doi:10.1175/2008BAMS2499.1.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., S. S. C. Shenoi, J. P. McCreary, D. Shankar, F. Durand, V. Fernando, and S. R. Shetye, 2009b: Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden–Julian oscillation. Geophys. Res. Lett., 36, L14606, doi:10.1029/2009GL038450.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., H. Cullen, G. Krahmann, and N. Naik, 1998: An ocean model’s response to North Atlantic Oscillation-like wind forcing. Geophys. Res. Lett., 25, 4521–4524, doi:10.1029/1998GL900162.

    • Search Google Scholar
    • Export Citation
  • Wang, T., O. H. OtterÃ¥, Y. Gao, and H. Wang, 2012: The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Climate Dyn., 39, 2917–2936, doi:10.1007/s00382-012-1373-5.

    • Search Google Scholar
    • Export Citation
  • White, W. B., J. Lean, D. R. Cayan, and M. D. Dettinger, 1997: Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res., 102, 3255–3266, doi:10.1029/96JC03549.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yu, B., and G. J. Boer, 2002: The roles of radiation and dynamical processes in the El Niño-like response to global warming. Climate Dyn., 19, 539–554, doi:10.1007/s00382-002-0244-x.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419–444, doi:10.1007/s00382-011-1167-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 527 221 26
PDF Downloads 304 54 5