Stationary Eddies and the Zonal Asymmetry of Net Precipitation and Ocean Freshwater Forcing

Robert C. Wills California Institute of Technology, Pasadena, California, and ETH Zurich, Zurich, Switzerland

Search for other papers by Robert C. Wills in
Current site
Google Scholar
PubMed
Close
and
Tapio Schneider California Institute of Technology, Pasadena, California, and ETH Zurich, Zurich, Switzerland

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Transport of water vapor in the atmosphere generates substantial spatial variability of net precipitation (precipitation minus evaporation). Over half of the total spatial variability in annual-mean net precipitation is accounted for by deviations from the zonal mean. Over land, these regional differences determine differences in surface water availability. Over oceans, they account, for example, for the Pacific–Atlantic difference in sea surface salinity, with implications for the deep overturning circulation. This study analyzes the atmospheric water budget in reanalyses from ERA-Interim and MERRA, to investigate which physical balances lead to zonal variation in net precipitation. It is found that the leading-order contribution is zonal variation in stationary-eddy vertical motion. Transient eddies modify the pattern of zonally anomalous net precipitation by moving moisture from the subtropical and tropical oceans onto land and poleward across the Northern Hemisphere storm tracks. Zonal variation in specific humidity and stationary-eddy horizontal advection play a secondary role. The dynamics leading to net precipitation via vertical motion in stationary eddies can be understood from a lower-tropospheric vorticity budget. The large-scale variations of vertical motion are primarily described by Sverdrup balance and Ekman pumping, with some modification by transient eddies. These results suggest that it is important to understand changes in stationary eddies and their influence on the zonal variation of transient eddy fluxes, in order to understand regional changes in net precipitation. They highlight the relative importance of different atmospheric mechanisms for the freshwater forcing of the North Pacific and North Atlantic.

Corresponding author address: Robert C. Wills, Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland. E-mail: rwills@caltech.edu

Abstract

Transport of water vapor in the atmosphere generates substantial spatial variability of net precipitation (precipitation minus evaporation). Over half of the total spatial variability in annual-mean net precipitation is accounted for by deviations from the zonal mean. Over land, these regional differences determine differences in surface water availability. Over oceans, they account, for example, for the Pacific–Atlantic difference in sea surface salinity, with implications for the deep overturning circulation. This study analyzes the atmospheric water budget in reanalyses from ERA-Interim and MERRA, to investigate which physical balances lead to zonal variation in net precipitation. It is found that the leading-order contribution is zonal variation in stationary-eddy vertical motion. Transient eddies modify the pattern of zonally anomalous net precipitation by moving moisture from the subtropical and tropical oceans onto land and poleward across the Northern Hemisphere storm tracks. Zonal variation in specific humidity and stationary-eddy horizontal advection play a secondary role. The dynamics leading to net precipitation via vertical motion in stationary eddies can be understood from a lower-tropospheric vorticity budget. The large-scale variations of vertical motion are primarily described by Sverdrup balance and Ekman pumping, with some modification by transient eddies. These results suggest that it is important to understand changes in stationary eddies and their influence on the zonal variation of transient eddy fluxes, in order to understand regional changes in net precipitation. They highlight the relative importance of different atmospheric mechanisms for the freshwater forcing of the North Pacific and North Atlantic.

Corresponding author address: Robert C. Wills, Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland. E-mail: rwills@caltech.edu
Save
  • Betts, A. K., 1998: Climate–convection feedbacks: Some further issues. Climatic Change, 39, 3538, doi:10.1023/A:1005323805826.

  • Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110, 18011820, doi:10.1175/1520-0493(1982)110<1801:DEIIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, doi:10.1038/ngeo248.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, doi:10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126, doi:10.1038/315021a0.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, doi:10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and J. Hanley, 2012: Midlatitude eddies, storm-track diffusivity, and poleward moisture transport in warm climates. J. Atmos. Sci., 69, 32373250, doi:10.1175/JAS-D-12-035.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, doi:10.1175/JCLI-D-13-00479.1.

    • Search Google Scholar
    • Export Citation
  • Couhert, A., T. Schneider, J. Li, D. E. Waliser, and A. M. Tompkins, 2010: The maintenance of the relative humidity of the subtropical free troposphere. J. Climate, 23, 390403, doi:10.1175/2009JCLI2952.1.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., 2009: Atmospheric control on the thermohaline circulation. J. Phys. Oceanogr., 39, 234247, doi:10.1175/2008JPO3897.1.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Boer, A., J. Toggweiler, and D. Sigman, 2008: Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr., 38, 435450, doi:10.1175/2007JPO3731.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., C. Hénin, V. Porte, and P. Arkin, 1996: Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep-Sea Res. I, 43, 11231141, doi:10.1016/0967-0637(96)00048-9.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., M. A. Cane, N. Naik, R. Seager, A. C. Clement, and A. van Geen, 2003: Warren revisited: Atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific.” J. Geophys. Res., 108, 3178, doi:10.1029/2001JC001058.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, and R. B. Lammers, 2001: Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error. Water Resour. Res., 37, 19551967, doi:10.1029/2001WR900024.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476, doi:10.1175/2009JCLI3197.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 127–168.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, doi:10.1175/JAS-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, doi:10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, doi:10.1146/annurev-earth-040809-152456.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1988: A simple model for surface stress and low-level flow in the tropical atmosphere driven by prescribed heating. Quart. J. Roy. Meteor. Soc., 114, 747770, doi:10.1002/qj.49711448110.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., P. L. Langen, D. Ferreira, and J. Marshall, 2013: Ocean basin geometry and the salinification of the Atlantic Ocean. J. Climate, 26, 61636184, doi:10.1175/JCLI-D-12-00358.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1983: The atmospheric branch of the hydrological cycle and climate. Variations in the Global Water Budget, A. Street-Perrott et al., Eds., Springer, 5–65.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Reid, J. L., 1953: On the temperature, salinity, and density differences between the Atlantic and Pacific Oceans in the upper kilometre. Deep-Sea Res., 7, 265275.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1979: On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res. I, 26, 11991223, doi:10.1016/0198-0149(79)90064-5.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., H. Liu, N. Henderson, I. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, 27, 46554676, doi:10.1175/JCLI-D-13-00446.1.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, doi:10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20, 56965706, doi:10.1175/2007JCLI1656.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15, 33433360, doi:10.1175/1520-0442(2002)015<3343:AOAEBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C., B. Fekete, M. Meybeck, and R. Lammers, 2000: Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. J. Hydrol., 237, 1739, doi:10.1016/S0022-1694(00)00282-1.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1983: Why is no deep water formed in the North Pacific? J. Mar. Res., 41, 327347, doi:10.1357/002224083788520207.

  • Weaver, A., C. Bitz, A. Fanning, and M. Holland, 1999: Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci., 27, 231285, doi:10.1146/annurev.earth.27.1.231.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38, 554571, doi:10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. Palmer, J. Shukla, R. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 451–14 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., T. F. Stocker, and W. S. Broecker, 1994: Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. J. Geophys. Res., 99, 12 44312 457, doi:10.1029/94JC00526.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 892 270 39
PDF Downloads 657 185 16