Contrasting Local versus Regional Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the GFDL Earth System Model

Sergey Malyshev Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey

Search for other papers by Sergey Malyshev in
Current site
Google Scholar
PubMed
Close
,
Elena Shevliakova Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey

Search for other papers by Elena Shevliakova in
Current site
Google Scholar
PubMed
Close
,
Ronald J. Stouffer Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey

Search for other papers by Ronald J. Stouffer in
Current site
Google Scholar
PubMed
Close
, and
Stephen W. Pacala Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey

Search for other papers by Stephen W. Pacala in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of land-use and land-cover change (LULCC) on surface climate using two ensembles of numerical experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) comprehensive Earth System Model ESM2Mb are investigated in this study. The experiments simulate historical climate with two different assumptions about LULCC: 1) no land-use change with potential vegetation (PV) and 2) with the CMIP5 historical reconstruction of LULCC (LU). Two different approaches were used in the analysis: 1) the authors compare differences in LU and PV climates to evaluate the regional and global effects of LULCC and 2) the authors characterize subgrid climate differences among different land-use tiles within each grid cell in the LU experiment. Using the first method, the authors estimate the magnitude of LULCC effect to be similar to some previous studies. Using the second method, the authors found a pronounced subgrid signal of LULCC in near-surface temperature over majority of areas affected by LULCC. The signal is strongest on croplands, where it is detectable with 95% confidence over 68.5% of all nonglaciated land grid cells in June–July–August, compared to 8.3% in the first method. In agricultural areas, the subgrid signal tends to be stronger than LU–PV signal by a factor of 1.3 in tropics in both summer and winter and by 1.5 in extratropics in winter. This analysis for the first time demonstrates and quantifies the local, subgrid-scale LULCC effects with a comprehensive ESM and compares it to previous global and regional approaches.

Corresponding author address: Sergey Malyshev, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: malyshev@princeton.edu

Abstract

The effects of land-use and land-cover change (LULCC) on surface climate using two ensembles of numerical experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) comprehensive Earth System Model ESM2Mb are investigated in this study. The experiments simulate historical climate with two different assumptions about LULCC: 1) no land-use change with potential vegetation (PV) and 2) with the CMIP5 historical reconstruction of LULCC (LU). Two different approaches were used in the analysis: 1) the authors compare differences in LU and PV climates to evaluate the regional and global effects of LULCC and 2) the authors characterize subgrid climate differences among different land-use tiles within each grid cell in the LU experiment. Using the first method, the authors estimate the magnitude of LULCC effect to be similar to some previous studies. Using the second method, the authors found a pronounced subgrid signal of LULCC in near-surface temperature over majority of areas affected by LULCC. The signal is strongest on croplands, where it is detectable with 95% confidence over 68.5% of all nonglaciated land grid cells in June–July–August, compared to 8.3% in the first method. In agricultural areas, the subgrid signal tends to be stronger than LU–PV signal by a factor of 1.3 in tropics in both summer and winter and by 1.5 in extratropics in winter. This analysis for the first time demonstrates and quantifies the local, subgrid-scale LULCC effects with a comprehensive ESM and compares it to previous global and regional approaches.

Corresponding author address: Sergey Malyshev, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: malyshev@princeton.edu
Save
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and G. J. Boer, 2010: Uncertainties in the 20th century carbon budget associated with land use change. Global Change Biol., 16, 33273348, doi:10.1111/j.1365-2486.2010.02202.x.

    • Search Google Scholar
    • Export Citation
  • Boggs, P. T., and J. E. Rogers, 1990: Orthogonal distance regression. Statistical Analysis of Measurement Error Models and Applications, P. J. Brown and W. A. Fuller, Eds., Contemporary Mathematics, Vol. 112, American Mathematical Society, 183194.

  • Bonan, G. B., 1996: A Land Surface Model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp, doi:10.5065/D6DF6P5X.

  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486, doi:10.1023/A:1005305708775.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., S. Sitch, W. von Bloh, M. Claussen, E. Bauer, and W. Cramer, 2004: Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biol., 10, 12531266, doi:10.1111/j.1365-2486.2004.00812.x.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2006: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Climate Dyn., 26, 587600, doi:10.1007/s00382-005-0092-6.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate, 26, 68596881, doi:10.1175/JCLI-D-12-00623.1.

    • Search Google Scholar
    • Export Citation
  • Chase, T. N., R. A. Pielke Sr., T. G. F. Kittel, R. R. Nemani, and S. W. Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn., 16, 93105, doi:10.1007/s003820050007.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, G. C. Hegerl, and R. A. Betts, 2013: The role of land use change in the recent warming of daily extreme temperatures. Geophys. Res. Lett., 40, 589594, doi:10.1002/grl.50159.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465–570.

  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, doi:10.5194/acp-11-11267-2011.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis, and respiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, doi:10.1016/0168-1923(91)90002-8.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538, doi:10.1071/PP9920519.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023, doi:10.1175/BAMS-84-8-1013.

  • Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, doi:10.1175/2009JCLI3102.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, doi:10.1029/JC083iC04p01889.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, doi:10.1175/JCLI-D-11-00338.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, doi:10.1175/JCLI-D-12-00150.1.

    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2005: FLUXNET Marconi conference gap-filled flux and meteorology data, 1992-2000. Oak Ridge National Laboratory Distributed Active Archive Center, accessed December 2014, doi:10.3334/ORNLDAAC/811.

  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, doi:10.1007/BF00386231.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., E. Shevliakova, P. C. D. Milly, and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20, 36213634, doi:10.1175/JCLI4185.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. J. Pitman, M. H. England, and P. J. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269, doi:10.1175/2008JCLI2580.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Goldewijk, K. K., 2001: Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem. Cycles, 15, 417433, doi:10.1029/1999GB001232.

    • Search Google Scholar
    • Export Citation
  • Harding, R. J., S.-E. Gryning, S. Halldin, and C. R. Lloyd, 2001: Progress in understanding of land surface/atmosphere exchanges at high latitudes. Theor. Appl. Climatol., 70, 518, doi:10.1007/s007040170002.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hilberts, A. G. J., P. A. Troch, C. Paniconi, and J. Boll, 2007: Low-dimensional modeling of hillslope subsurface flow: Relationship between rainfall, recharge, and unsaturated storage dynamics. Water Resour. Res., 43, W03445, doi:10.1029/2006WR004964.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. A., 1999: The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus, 51B, 298313, doi:10.1034/j.1600-0889.1999.00013.x.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • Jones, A. D., and Coauthors, 2013a: Greenhouse gas policy influences climate via direct effects of land-use change. J. Climate, 26, 36573670, doi:10.1175/JCLI-D-12-00377.1.

    • Search Google Scholar
    • Export Citation
  • Jones, A. D., W. D. Collins, and M. S. Torn, 2013b: On the additivity of radiative forcing between land use change and greenhouse gases. Geophys. Res. Lett., 40, 40364041, doi:10.1002/grl.50754.

    • Search Google Scholar
    • Export Citation
  • Kleinen, T., V. Brovkin, and R. J. Schuldt, 2012: A dynamic model of wetland extent and peat accumulation: Results for the Holocene. Biogeosciences, 9, 235248, doi:10.5194/bg-9-235-2012.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., P. A. Dirmeyer, V. Merwade, T. DelSole, J. M. Adams, and D. Niyogi, 2013: Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. J. Geophys. Res. Atmos., 118, 63376353, doi:10.1002/jgrd.50463.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Climatol., 30, 20662087, doi:10.1002/joc.2061.

    • Search Google Scholar
    • Export Citation
  • Lean, J., 2009: Calculations of solar irradiance: Monthly means from 1882 to 2008, annual means from 1610 to 2008. 4 pp. [Available online at http://www.geo.fu-berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/Calculations_of_Solar_Irradiance.pdf.]

  • Leuning, R., 1995: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ., 18, 339355, doi:10.1111/j.1365-3040.1995.tb00370.x.

    • Search Google Scholar
    • Export Citation
  • Li, H., M. S. Wigmosta, H. Wu, M. Huang, Y. Ke, A. M. Coleman, and L. R. Leung, 2013: A physically based runoff routing model for land surface and Earth system models. J. Hydrometeor., 14, 808828, doi:10.1175/JHM-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2013: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, doi:10.1002/joc.3736.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. T. Wetherald, and R. J. Stouffer, 1981: Summer dryness due to an increase of atmospheric CO2 concentration. Climatic Change, 3, 347386, doi:10.1007/BF02423242.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Coauthors, 2014: An enhanced model of land water and energy for global hydrologic and Earth-system studies. J. Hydrometeor., 15, 17391761, doi:10.1175/JHM-D-13-0162.1.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, doi:10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., F. B. Avila, G. Abramowitz, Y. P. Wang, S. J. Phipps, and N. de Noblet-Ducoudré, 2011: Importance of background climate in determining impact of land-cover change on regional climate. Nat. Climate Change, 1, 472475, doi:10.1038/nclimate1294.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., and K. Caldeira, 2012: Attribution of atmospheric CO2 and temperature increases to regions: Importance of preindustrial land use change. Environ. Res. Lett., 7, 034001, doi:10.1088/1748-9326/7/3/034001.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2010: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett., 37, L08702, doi:10.1029/2010GL043010.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027, doi:10.1029/1999GB900046.

    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous medium. J. Appl. Phys., 1, 318333.

  • Sacks, W. J., D. Deryng, J. A. Foley, and N. Ramankutty, 2010: Crop planting dates: An analysis of global patterns. Global Ecol. Biogeogr., 19, 607620, doi:10.1111/j.1466-8238.2010.00551.x.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705, doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sentman, L. T., E. Shevliakova, R. J. Stouffer, and S. Malyshev, 2011: Time scales of terrestrial carbon response related to land-use application: Implications for initializing an Earth system model. Earth Interact., 15, doi:10.1175/2011EI401.1.

    • Search Google Scholar
    • Export Citation
  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, doi:10.1029/2007GB003176.

    • Search Google Scholar
    • Export Citation
  • Shevliakova, E., R. J. Stouffer, S. Malyshev, J. P. Krasting, G. C. Hurtt, and S. W. Pacala, 2013: Historical warming reduced due to enhanced land carbon uptake. Proc. Natl. Acad. Sci. USA, 110, 16 73016 735, doi:10.1073/pnas.1314047110.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuña, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 83713 857, doi:10.1029/98JD00693.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1576 464 49
PDF Downloads 658 166 11