• Berg, N., , A. Hall, , F. Sun, , S. Capps, , D. Walton, , B. Langenbrunner, , and D. Neelin, 2015:Twenty-first-century precipitation changes over the Los Angeles region. J. Climate, 28, 401421, doi:10.1175/JCLI-D-14-00316.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • California Department of Finance, 2013: New population projections: California to surpass 50 million in 2049. CDOF Press Release, 10 pp. [Available online at http://www.tularecog.org/DocumentCenter/View/374.]

  • Cayan, D. R., , and J. O. Roads, 1984: Local relationships between United States West Coast precipitation and monthly mean circulation parameters. Mon. Wea. Rev., 112, 12761282, doi:10.1175/1520-0493(1984)112<1276:LRBUSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , E. P. Maurer, , M. D. Dettinger, , M. Tyree, , and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87, 2142, doi:10.1007/s10584-007-9377-6.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , T. R. Ault, , and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and central plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Search Google Scholar
    • Export Citation
  • Das, T., , E. P. Maurer, , D. W. Pierce, , M. D. Dettinger, , and D. R. Cayan, 2013: Increases in flood magnitudes in California under warming climates. J. Hydrol., 501, 101110, doi:10.1016/j.jhydrol.2013.07.042.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., , D. L. Swain, , and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA, 112, 39313936, doi:10.1073/pnas.1422385112.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and et al. , 2006: Simulations of present and future climates in the western United States with four nested regional climate models. J. Climate, 19, 873895, doi:10.1175/JCLI3669.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , S. E. Wijffels, , and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., 2014: The global groundwater crisis. Nat. Climate Change, 4, 945948, doi:10.1038/nclimate2425.

  • Griffin, D., , and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, doi:10.1002/2014GL062433.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and et al. , 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Howitt, R. E., , J. Medellín-Azuara, , D. MacEwan, , J. R. Lund, , and D. A. Sumner, 2014: Economic analysis of the 2014 drought for California agriculture. Center for Watershed Sciences, University of California, 20 pp. [Available online at https://watershed.ucdavis.edu/files/biblio/DroughtReport_23July2014_0.pdf.]

  • Knutti, R., 2010: The end of model democracy? Climatic Change, 102, 395404, doi:10.1007/s10584-010-9800-2.

  • Langford, S., , S. Stevenson, , and D. Noone, 2014: Analysis of low-frequency precipitation variability in CMIP5 historical simulations for southwestern North America. J. Climate, 27, 27352756, doi:10.1175/JCLI-D-13-00317.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and et al. , 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, doi:10.1175/JCLI-D-13-00273.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T., , and W. Blier, 1997: The variability of wintertime precipitation in the region of California. J. Climate, 10, 22612276, doi:10.1175/1520-0442(1997)010<2261:TVOWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , B. Langenbrunner, , J. E. Meyerson, , A. Hall, , and N. Berg, 2013: California winter precipitation change under global warming in the Coupled Model Intercomparison Project phase 5 ensemble. J. Climate, 26, 62386256, doi:10.1175/JCLI-D-12-00514.1.

    • Search Google Scholar
    • Export Citation
  • Peters, G. P., and et al. , 2013: The challenge to keep global warming below 2°C. Nat. Climate Change, 3, 46, doi:10.1038/nclimate1783.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and et al. , 2013a: The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J. Climate, 26, 58795896, doi:10.1175/JCLI-D-12-00766.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and et al. , 2013b: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Polade, S. D., , D. W. Pierce, , D. R. Cayan, , A. Gershunov, , and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, doi:10.1038/srep04364.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Naik, , and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, doi:10.1175/JCLI-D-11-00363.1.

    • Search Google Scholar
    • Export Citation
  • Sewall, J. O., , and L. C. Sloan, 2004: Disappearing Arctic sea ice reduces available water in the American West. Geophys. Res. Lett., 31, L06209, doi:10:1029/2003GL019133.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., , M. Tsiang, , M. Haugen, , D. Singh, , A. Charland, , B. Rajaratnam, , and N. S. Diffenbaugh, 2014: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change [in “Explaining Extreme Events of 2013”]. Bull. Amer. Meteor. Soc., 95, S3–S7, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • U.S. Department of Agriculture, 2012: California agricultural statistics, 2012 crop year. 94 pp. [Available online at http://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/Reports/2012cas-all.pdf.]

  • van Oldenborgh, G. J., , M. Collins, , J. Arblaster, , J. Christensen, , J. Marotzke, , S. B. Power, , M. Rummukainen, , and T. Zhou, 2014: Annex I: Atlas of global and regional climate projections. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1311–1393. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_AnnexI_FINAL.pdf.]

  • Wang, S.-Y., , L. Hipps, , R. R. Gillies, , and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Water Education Foundation, 2011: Looking to the source: Watersheds of the Sierra Nevada. Water Education Foundation, 27 pp. [Available online at http://www.sierranevada.ca.gov/our-region/docs/waterreport.pdf.]

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 322 322 78
PDF Downloads 238 238 61

Increased Interannual Precipitation Extremes over California under Climate Change

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Changes to mean and extreme wet season precipitation over California on interannual time scales are analyzed using twenty-first-century precipitation data from 34 global climate models. Models disagree on the sign of projected changes in mean precipitation, although in most models the change is very small compared to historical and simulated levels of interannual variability. For the 2020/21–2059/60 period, there is no projected increase in the frequency of extremely dry wet seasons in the ensemble mean. Wet extremes are found to increase to around 2 times the historical frequency, which is statistically significant at the 95% level. Stronger signals emerge in the 2060/61–2099/2100 period. Across all models, extremely dry wet seasons are roughly 1.5 to 2 times more common, and wet extremes generally triple in their historical frequency (statistically significant). Large increases in precipitation variability in most models account for the modest increases to dry extremes. Increases in the frequency of wet extremes can be ascribed to equal contributions from increased variability and increases to the mean. These increases in the frequency of interannual precipitation extremes will create severe water management problems in a region where coping with large interannual variability in precipitation is already a challenge. Evidence from models and observations is examined to understand the causes of the low precipitation associated with the 2013/14 drought in California. These lines of evidence all strongly indicate that the low 2013/14 wet season precipitation total can be very likely attributed to natural variability, in spite of the projected future changes in extremes.

Corresponding author address: Neil Berg, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 7127 Math Sciences Building, 405 Hilgard Ave., Los Angeles, CA 90095. E-mail: nberg@atmos.ucla.edu

Abstract

Changes to mean and extreme wet season precipitation over California on interannual time scales are analyzed using twenty-first-century precipitation data from 34 global climate models. Models disagree on the sign of projected changes in mean precipitation, although in most models the change is very small compared to historical and simulated levels of interannual variability. For the 2020/21–2059/60 period, there is no projected increase in the frequency of extremely dry wet seasons in the ensemble mean. Wet extremes are found to increase to around 2 times the historical frequency, which is statistically significant at the 95% level. Stronger signals emerge in the 2060/61–2099/2100 period. Across all models, extremely dry wet seasons are roughly 1.5 to 2 times more common, and wet extremes generally triple in their historical frequency (statistically significant). Large increases in precipitation variability in most models account for the modest increases to dry extremes. Increases in the frequency of wet extremes can be ascribed to equal contributions from increased variability and increases to the mean. These increases in the frequency of interannual precipitation extremes will create severe water management problems in a region where coping with large interannual variability in precipitation is already a challenge. Evidence from models and observations is examined to understand the causes of the low precipitation associated with the 2013/14 drought in California. These lines of evidence all strongly indicate that the low 2013/14 wet season precipitation total can be very likely attributed to natural variability, in spite of the projected future changes in extremes.

Corresponding author address: Neil Berg, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 7127 Math Sciences Building, 405 Hilgard Ave., Los Angeles, CA 90095. E-mail: nberg@atmos.ucla.edu
Save