• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, doi:10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , P. V. Rensch, , T. Cowan, , and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-S., , and K. E. Trenberth, 1988: Forced planetary waves in the Northern Hemisphere winter: Wave-coupled orographic and thermal forcings. J. Atmos. Sci., 45, 682704, doi:10.1175/1520-0469(1988)045<0682:FPWITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, M., , P. Xie, , J. E. Janowiak, , and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., , Z. Wen, , R. Wu, , P. Zhao, , and J. Cao, 2014: Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dyn., 43, 469481, doi:10.1007/s00382-013-1943-1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , J.-Y. Tu, , and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, doi:10.1175/2761.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , L.-F. Huang, , J.-Y. Tu, , L. Tseng, , and Y.-C. Hsueh, 2009: El Niño impacts on precipitation in the western North Pacific–East Asian sector. J. Climate, 22, 2039–2057, doi:10.1175/2008JCLI2649.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., , and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gu, D., , and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, doi:10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., 2000: A simple GCM based on dry dynamics and constant forcing. J. Atmos. Sci., 57, 15571572, doi:10.1175/1520-0469(2000)057<1557:ASGBOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to the thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, R., , and L. Lu, 1989: Numerical simulation of the relationship between the anomaly of subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci., 6, 202214, doi:10.1007/BF02658016.

    • Search Google Scholar
    • Export Citation
  • Jia, X., , S. Wang, , H. Lin, , and Q. Bao, 2015: A connection between the tropical Pacific Ocean and the winter climate in the Asian-Pacific region. J. Geophys. Res. Atmos., 120, 430–448, doi:10.1002/2014JD022324.

    • Search Google Scholar
    • Export Citation
  • Jin, F., , and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and et al. , 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, M., , J.-G. Jhun, , and K.-J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi:10.1029/2007GL031977.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., 1992: East Asia summer monsoon rainfall variability and climate teleconnection. J. Meteor. Soc. Japan, 70, 211242.

  • Lau, K. M., , and P. H. Chan, 1983a: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: Simultaneous relationships. J. Atmos. Sci., 40, 27352750, doi:10.1175/1520-0469(1983)040<2735:STCVAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and P. H. Chan, 1983b: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part II: Lagged correlations. J. Atmos. Sci., 40, 27512767, doi:10.1175/1520-0469(1983)040<2751:STCVAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and J. S. Boyle, 1987: Tropical and extratropical forcing of the large-scale circulation: A diagnostic study. Mon. Wea. Rev., 115, 400428, doi:10.1175/1520-0493(1987)115<0400:TAEFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , H.-T. Wu, , and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate, 10, 381392, doi:10.1175/1520-0442(1997)010<0381:TROLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , K. M. Kim, , and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, doi:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , T. Gong, , N. Johnson, , S. Feldstein, , and D. Pollard, 2011a: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, doi:10.1175/2011JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , S. Feldstein, , D. Pollard, , and T. White, 2011b: Do planetary wave dynamics contribute to equable climates? J. Climate, 24, 23912404, doi:10.1175/2011JCLI3825.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., , and Y. Zhang, 2014: Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the mei-yu season. J. Climate, 27, 66606672, doi:10.1175/JCLI-D-14-00021.1.

    • Search Google Scholar
    • Export Citation
  • Liao, Q., , S. Tao, , and H. Wang, 2004: Interannual variation of summer subtropical westerly jet in East Asia and its impacts on the climate anomalies of East Asia summer monsoon. Chin. J. Geophys., 47, 1221, doi:10.1002/cjg2.449.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , and J. Derome, 1997: On the modification of the high- and low-frequency eddies associated with the PNA anomaly: An observational study. Tellus, 49A, 8799, doi:10.1034/j.1600-0870.1997.00006.x.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , and J. Derome, 2004: Nonlinearity of the extratropical response to tropical forcing. J. Climate, 17, 25972608, doi:10.1175/1520-0442(2004)017<2597:NOTERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, R., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771783, doi:10.2151/jmsj.79.771.

    • Search Google Scholar
    • Export Citation
  • Lu, R., , and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, doi:10.1175/2008JCLI2444.1.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , M. R. Haylock, , and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16, 29052914, doi:10.1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, J. H., , and S. I. An, 2014: The impact of tropical western Pacific convection on the North Pacific atmospheric circulation during the boreal winter. Climate Dyn., 43, 22272238, doi:10.1007/s00382-013-2047-7.

    • Search Google Scholar
    • Export Citation
  • Sabin, T. P., , C. A. Babu, , and P. V. Joseph, 2013: SST–convection relation over tropical oceans. Int. J. Climatol., 33, 14241435, doi:10.1002/joc.3522.

    • Search Google Scholar
    • Export Citation
  • Schneider, D., , C. Deser, , and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., , and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , and I. M. Held, 1990: The stationary wave response to a tropical SST anomaly in an idealized GCM. J. Atmos. Sci., 47, 25462566, doi:10.1175/1520-0469(1990)047<2546:TSWRTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265, doi:10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J. Yang, , T. Zhou, , and B. Wang, 2008: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, doi:10.1175/2007JCLI1981.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J. Climate, 15, 399419, doi:10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, doi:10.1002/qj.49712657017.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1982: Seasonality in the local and remote atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 39, 4152, doi:10.1175/1520-0469(1982)039<0041:SITLAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and H. R. Chang, 1998: Atmospheric wave propagation in heterogeneous flow: Basic flow controls on tropical–extratropical interaction and equatorial wave modification. Dyn. Atmos. Oceans, 27, 91134, doi:10.1016/S0377-0265(97)00003-1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , T. Zhou, , and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, doi:10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , T. Zhou, , and T. Li, 2012: Two distinct modes of tropical Indian Ocean precipitation in boreal winter and their impacts on the equatorial western Pacific. J. Climate, 25, 921938, doi:10.1175/JCLI-D-11-00065.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. P. Kirtman, 2007: Regimes of local air–sea interactions and implications for performance of forced simulations. Climate Dyn., 29, 393410, doi:10.1007/s00382-007-0246-9.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392588, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and P. J. Webster, 1990: The effect of summer tropical heating on the location and intensity of the extratropical westerly jet stream. J. Geophys. Res., 95, 18 70518 721, doi:10.1029/JD095iD11p18705.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. Feldstein, , and S. Lee, 2011: The impact of the Madden–Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., , S. Lee, , and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , A. Sumi, , and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Search Google Scholar
    • Export Citation
  • Zheng, J., , Q. Liu, , C. Wang, , and X.-T. Zheng, 2013: Impact of heating anomalies associated with rainfall variations over the Indo-western Pacific on Asian atmospheric circulation in winter. Climate Dyn., 40, 20232033, doi:10.1007/s00382-012-1478-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 11
PDF Downloads 42 42 8

Impact of Tropical Pacific Precipitation Anomaly on the East Asian Upper-Tropospheric Westerly Jet during the Boreal Winter

View More View Less
  • 1 Center for Monsoon and Environment Research, and Department of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China
  • | 2 Center for Monsoon and Environment Research, and Department of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, China
  • | 3 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 5 Center for Monsoon and Environment Research, and Department of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China
© Get Permissions
Restricted access

Abstract

The leading mode of boreal winter precipitation variability over the tropical Pacific for the period 1980–2010 shows a west–east dipole pattern with one center over the western North Pacific (WNP) and Maritime Continent and the other center over the equatorial central Pacific (CP). Observational evidence shows that the variability of the East Asian upper-tropospheric subtropical westerly jet (EAJ) has a significant correlation with precipitation anomalies over the WNP and CP and that tropical precipitation anomalies over WNP and CP have a distinct influence on the variation of the EAJ. A series of numerical experiments based on a linear baroclinic model are performed to confirm the influence of the heating anomalies associated with precipitation perturbations over the WNP and CP on the EAJ. The results of numerical experiments indicate that a heat source over the WNP can excite a northward-propagating Rossby wave train in the upper troposphere over East Asia and facilitate a poleward eddy momentum flux. It results in the acceleration of the westerlies between 30° and 45°N, which favors a northward displacement of the EAJ. The response induced by a heat sink over the CP features a zonal easterly band between 25° and 40°N, suggesting that the response to heat sink associated with negative precipitation anomalies over the CP may weaken the EAJ. A strengthened relationship was found between tropical Pacific precipitation and the EAJ since 1979. The modeling results suggest that the shift of mean states might be responsible for the strengthened EAJ–rainfall relationship after 1979.

Corresponding author address: Zhiping Wen, Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China. E-mail: eeswzp@mail.sysu.edu.cn

Abstract

The leading mode of boreal winter precipitation variability over the tropical Pacific for the period 1980–2010 shows a west–east dipole pattern with one center over the western North Pacific (WNP) and Maritime Continent and the other center over the equatorial central Pacific (CP). Observational evidence shows that the variability of the East Asian upper-tropospheric subtropical westerly jet (EAJ) has a significant correlation with precipitation anomalies over the WNP and CP and that tropical precipitation anomalies over WNP and CP have a distinct influence on the variation of the EAJ. A series of numerical experiments based on a linear baroclinic model are performed to confirm the influence of the heating anomalies associated with precipitation perturbations over the WNP and CP on the EAJ. The results of numerical experiments indicate that a heat source over the WNP can excite a northward-propagating Rossby wave train in the upper troposphere over East Asia and facilitate a poleward eddy momentum flux. It results in the acceleration of the westerlies between 30° and 45°N, which favors a northward displacement of the EAJ. The response induced by a heat sink over the CP features a zonal easterly band between 25° and 40°N, suggesting that the response to heat sink associated with negative precipitation anomalies over the CP may weaken the EAJ. A strengthened relationship was found between tropical Pacific precipitation and the EAJ since 1979. The modeling results suggest that the shift of mean states might be responsible for the strengthened EAJ–rainfall relationship after 1979.

Corresponding author address: Zhiping Wen, Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China. E-mail: eeswzp@mail.sysu.edu.cn
Save