• Andreas, E. L, 2015: Spatial variability of surface-level meteorological variables over Arctic sea ice. 19th Conf. on Air-Sea Interaction, Phoenix, AZ, Amer. Meteor. Soc., 11.4. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper256265.html.]

  • Andreas, E. L, , and G. Treviño, 1997: Using wavelets to detect trends. J. Atmos. Oceanic Technol., 14, 554564, doi:10.1175/1520-0426(1997)014<0554:UWTDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , and R. E. Jordan, 2013: Spatial correlation of surface-level variables over Arctic sea ice. 12th Conf. on Polar Meteorology and Oceanography, Seattle, WA, Amer. Meteor. Soc., 5.3. [Available online at https://ams.confex.com/ams/12POLAR/webprogram/Paper225222.html.]

  • Andreas, E. L, , C. A. Paulson, , R. M. Williams, , R. W. Lindsay, , and J. A. Businger, 1979: The turbulent heat flux from Arctic leads. Bound.-Layer Meteor., 17, 5791, doi:10.1007/BF00121937.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 1999: An overview of the SHEBA atmospheric surface flux program. Preprints, Fifth Conf. on Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteor. Soc., 411–416.

  • Andreas, E. L, , P. S. Guest, , P. O. G. Persson, , C. W. Fairall, , T. W. Horst, , R. E. Moritz, , and S. R. Semmer, 2002: Near-surface water vapor over polar sea ice is always near ice saturation. J. Geophys. Res., 107, 8032, doi:10.1029/2000JC000411.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , C. A. Geiger, , G. Treviño, , and K. J. Claffey, 2008: Identifying nonstationarity in turbulence series. Bound.-Layer Meteor., 127, 3756, doi:10.1007/s10546-007-9252-z.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , T. W. Horst, , A. A. Grachev, , P. O. G. Persson, , C. W. Fairall, , P. S. Guest, , and R. E. Jordan, 2010a: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Quart. J. Roy. Meteor. Soc., 136, 927943, doi:10.1002/qj.618.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , P. O. G. Persson, , A. A. Grachev, , R. E. Jordan, , T. W. Horst, , P. S. Guest, , and C. W. Fairall, 2010b: Parameterizing turbulent exchange over sea ice in winter. J. Hydrometeor., 11, 87104, doi:10.1175/2009JHM1102.1.

    • Search Google Scholar
    • Export Citation
  • Bendat, J. S., , and A. G. Piersol, 1971: Random Data: Analysis and Measurement Procedures. Wiley, 407 pp.

  • Bitz, C. M., , and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677, doi:10.1029/1999JC900100.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , K. M. Hines, , and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting Model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1981: Modeling the geostrophic drag coefficient for AIDJEX. J. Geophys. Res., 86, 19891994, doi:10.1029/JC086iC03p01989.

    • Search Google Scholar
    • Export Citation
  • Brun, E., , Z.-L. Yang, , R. Essery, , and J. Cohen, 2008: Snow-cover parameterization and modeling. Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, R. L. Armstrong and E. Brun, Eds., Cambridge University Press, 125–180.

  • Brunke, M. A., , M. Zhou, , X. Zeng, , and E. L Andreas, 2006: An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. J. Geophys. Res., 111, C09001, doi:10.1029/2005JC002907.

    • Search Google Scholar
    • Export Citation
  • Chung, Y.-C., , S. Bélair, , and J. Mailhot, 2011: Blowing snow on Arctic sea ice: Results from an improved sea ice–snow–blowing snow coupled system. J. Hydrometeor., 12, 678689, doi:10.1175/2011JHM1293.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Glendening, J. W., , and S. D. Burk, 1992: Turbulent transport from an Arctic lead: A large-eddy simulation. Bound.-Layer Meteor., 59, 315339, doi:10.1007/BF02215457.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , C. W. Fairall, , P. O. G. Persson, , E. L Andreas, , and P. S. Guest, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, doi:10.1007/s10546-004-2729-0.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , E. L Andreas, , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 2007: SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315333, doi:10.1007/s10546-007-9177-6.

    • Search Google Scholar
    • Export Citation
  • Gunst, R. F., 1995: Estimating spatial correlations from spatial–temporal meteorological data. J. Climate, 8, 24542470, doi:10.1175/1520-0442(1995)008<2454:ESCFST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., 2003: An improved single-column model representation of ocean mixing associated with summertime leads: Results from a SHEBA case study. J. Geophys. Res., 108, 3107, doi:10.1029/2002JC001557.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., , S. P. Oncley, , and S. R. Semmer, 1997: Measurement of water vapor fluxes using capacitance RH sensors and cospectral similarity. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Amer. Meteor. Soc., 360–361.

  • Hunke, E. C., , W. H. Lipscomb, , and A. K. Turner, 2010: Sea-ice models for climate study: Retrospective and new directions. J. Glaciol., 56, 11621172, doi:10.3189/002214311796406095.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , W. H. Lipscomb, , A. K. Turner, , N. Jeffery, , and S. Elliott, 2013: CICE: The Los Alamos sea ice model documentation and software user’s manual, version 5.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 115 pp. [Available online at http://oceans11.lanl.gov/svn/CICE/tags/release-5.0.1/doc/cicedoc.pdf.]

  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , C. W. Fairall, , M. D. Shupe, , P. O. G. Persson, , E. L Andreas, , P. S. Guest, , and R. E. Moritz, 2002a: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , M. D. Shupe, , T. Uttal, , and B. J. McCarty, 2002b: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., , and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., 1998: Temporal variability of the energy balance of thick Arctic pack ice. J. Climate, 11, 313333, doi:10.1175/1520-0442(1998)011<0313:TVOTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W. H., 2001: Remapping the thickness distribution in sea ice models. J. Geophys. Res., 106, 13 98914 000, doi:10.1029/2000JC000518.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., , and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Interscience Publishers, 239 pp.

  • Makshtas, A. P., 1991: The Heat Budget of Arctic Ice in the Winter. International Glaciological Society, 77 pp.

  • Makshtas, A. P., , E. L Andreas, , P. N. Svyaschennikov, , and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmos. Res., 52, 77113, doi:10.1016/S0169-8095(99)00028-9.

    • Search Google Scholar
    • Export Citation
  • Militzer, J. M., , M. C. Michaelis, , S. R. Semmer, , K. S. Norris, , T. W. Horst, , S. P. Oncley, , A. C. Delany, , and F. V. Brock, 1995: Development of the prototype PAM III/Flux-PAM surface meteorological station. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 490–494.

  • Morrison, H., , J. A. Curry, , M. D. Shupe, , and P. Zuidema, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of Arctic clouds. J. Atmos. Sci., 62, 16781693, doi:10.1175/JAS3447.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Perovich, D. K., , W. B. Tucker III, , and K. A. Ligett, 2002: Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res., 107, 8048, doi:10.1029/2000JC000449.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , T. C. Grenfell, , J. A. Richter-Menge, , B. Light, , W. B. Tucker III, , and H. Eicken, 2003: Thin and thinner: Sea ice mass balance measurements during SHEBA. J. Geophys. Res., 108, 8050, doi:10.1029/2001JC001079.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , C. W. Fairall, , E. L Andreas, , P. S. Guest, , and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , S. Y. Matrosov, , and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and et al. , 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., , J. Holmgren, , and D. K. Perovich, 2002: Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. J. Geophys. Res., 107, 8047, doi:10.1029/2000JC000400.

    • Search Google Scholar
    • Export Citation
  • Tastula, E.-M., , T. Vihma, , and E. L Andreas, 2012: Evaluation of Polar WRF from modeling of the atmospheric boundary layer over Antarctic sea ice in autumn and winter. Mon. Wea. Rev., 140, 39193935, doi:10.1175/MWR-D-12-00016.1.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., 1982: Statistical properties of the atmospheric pressure field over the Arctic Ocean. J. Atmos. Sci., 39, 22292238, doi:10.1175/1520-0469(1982)039<2229:SPOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Treviño, G., , and E. L Andreas, 2008: On Reynolds averaging of turbulence time series. Bound.-Layer Meteor., 128, 303311, doi:10.1007/s10546-008-9288-8.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and et al. , 2002: Surface Heat Budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., , W. D. Hibler III, , and B. Ross, 1985: Numerical simulation of Northern Hemisphere sea ice variability, 1951–1980. J. Geophys. Res., 90, 48474865, doi:10.1029/JC090iC03p04847.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., , and I. Mirouze, 2013: On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation. Quart. J. Roy. Meteor. Soc., 139, 242260, doi:10.1002/qj.1955.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Worby, A. P., , C. A. Geiger, , M. J. Paget, , M. L. Van Woert, , S. F. Ackley, , and T. L. DeLiberty, 2008: Thickness distribution of Antarctic sea ice. J. Geophys. Res., 113, C05S92, doi:10.1029/2007JC004254.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 4
PDF Downloads 14 14 0

Spatial Variability of Surface-Level State Variables over Arctic Sea Ice

View More View Less
  • 1 NorthWest Research Associates, Inc., Lebanon, New Hampshire
  • | 2 Jordan Environmental Modeling, PC, Hanover, New Hampshire
© Get Permissions
Restricted access

Abstract

Numerical models of the atmosphere, oceans, and sea ice are divided into horizontal grid cells that can range in size from a few kilometers to hundreds of kilometers. In these models, many surface-level variables are assumed to be uniform over a grid cell. Using a year of in situ data from the experiment to study the Surface Heat Budget of the Arctic Ocean (SHEBA), the authors investigate the accuracy of this assumption of gridcell uniformity for the surface-level variables pressure, air temperature, wind speed, humidity, and incoming longwave radiation. The paper bases its analysis on three statistics: the monthly average and, for each season, the spatial correlation function and the spatial bias. For five SHEBA sites, which had a maximum separation of 12 km, the analysis supports the assumption of gridcell uniformity in pressure, air temperature, wind speed, and humidity in all seasons. In winter, when the incidence of fractional cloudiness is largest, the incoming longwave radiation may not be uniform over a grid cell. In other seasons, the bimodal distribution in cloud cover—either clear skies or total cloud cover—tends to homogenize the incoming radiation at scales of 12 km and less.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc., 25 Eagle Ridge, Lebanon, NH 03766-1900. E-mail: eandreas@nwra.com

Abstract

Numerical models of the atmosphere, oceans, and sea ice are divided into horizontal grid cells that can range in size from a few kilometers to hundreds of kilometers. In these models, many surface-level variables are assumed to be uniform over a grid cell. Using a year of in situ data from the experiment to study the Surface Heat Budget of the Arctic Ocean (SHEBA), the authors investigate the accuracy of this assumption of gridcell uniformity for the surface-level variables pressure, air temperature, wind speed, humidity, and incoming longwave radiation. The paper bases its analysis on three statistics: the monthly average and, for each season, the spatial correlation function and the spatial bias. For five SHEBA sites, which had a maximum separation of 12 km, the analysis supports the assumption of gridcell uniformity in pressure, air temperature, wind speed, and humidity in all seasons. In winter, when the incidence of fractional cloudiness is largest, the incoming longwave radiation may not be uniform over a grid cell. In other seasons, the bimodal distribution in cloud cover—either clear skies or total cloud cover—tends to homogenize the incoming radiation at scales of 12 km and less.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc., 25 Eagle Ridge, Lebanon, NH 03766-1900. E-mail: eandreas@nwra.com
Save