Improving Climate Change Detection through Optimal Seasonal Averaging: The Case of the North Atlantic Jet and European Precipitation

Giuseppe Zappa Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Giuseppe Zappa in
Current site
Google Scholar
PubMed
Close
,
Brian J. Hoskins Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Brian J. Hoskins in
Current site
Google Scholar
PubMed
Close
, and
Theodore G. Shepherd Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Theodore G. Shepherd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The detection of anthropogenic climate change can be improved by recognizing the seasonality in the climate change response. This is demonstrated for the North Atlantic jet [zonal wind at 850 hPa (U850)] and European precipitation responses projected by the climate models from phase 5 of CMIP (CMIP5). The U850 future response is characterized by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November–April and a poleward shift in May–October. Under the RCP8.5 scenario, the multimodel mean response in U850 in these two extended seasonal means emerges by 2035–40 for the lower-latitude features and by 2050–70 for the higher-latitude features, relative to the 1960–90 climate. This is 5–15 years earlier than when evaluated in the traditional meteorological seasons (December–February and June–August), and it results from an increase in the signal-to-noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal-to-noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10–20 years. Furthermore, some of the regional responses (such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter) are projected to emerge by 2020–25, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.

Corresponding author address: Giuseppe Zappa, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: g.zappa@reading.ac.uk

Abstract

The detection of anthropogenic climate change can be improved by recognizing the seasonality in the climate change response. This is demonstrated for the North Atlantic jet [zonal wind at 850 hPa (U850)] and European precipitation responses projected by the climate models from phase 5 of CMIP (CMIP5). The U850 future response is characterized by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November–April and a poleward shift in May–October. Under the RCP8.5 scenario, the multimodel mean response in U850 in these two extended seasonal means emerges by 2035–40 for the lower-latitude features and by 2050–70 for the higher-latitude features, relative to the 1960–90 climate. This is 5–15 years earlier than when evaluated in the traditional meteorological seasons (December–February and June–August), and it results from an increase in the signal-to-noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal-to-noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10–20 years. Furthermore, some of the regional responses (such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter) are projected to emerge by 2020–25, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.

Corresponding author address: Giuseppe Zappa, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: g.zappa@reading.ac.uk
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balan Sarojini, B., P. A. Stott, E. Black, and D. Polson, 2012: Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean. Geophys. Res. Lett.,39, L21706, doi:10.1029/2012GL053373.

  • Barkhordarian, A., H. von Storch, and J. Bhend, 2013: The expectation of future precipitation change over the Mediterranean region is different from what we observe. Climate Dyn., 40, 225244, doi:10.1007/s00382-012-1497-7.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., and Coauthors, 2005: Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 12911314, doi:10.1175/JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Bladé, I., D. Fortuny, G. J. van Oldenborgh, and B. Liebmann, 2012: The summer North Atlantic Oscillation in CMIP3 models and related uncertainties in projected summer drying in Europe. J. Geophys. Res.,117, D16104, doi:10.1029/2012JD017816.

  • Chang, E. K., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and P. A. Stott, 2009: Attribution of anthropogenic influence on seasonal sea level pressure. Geophys. Res. Lett.,36, L23709, doi:10.1029/2009GL041269.

  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, and P. A. Stott, 2003: Detection of human influence on sea-level pressure. Nature, 422, 292294, doi:10.1038/nature01487.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., R. J. Allan, and T. J. Ansell, 2005: Detection of external influence on sea level pressure with a multi-model ensemble. Geophys. Res. Lett.,32, L19714, doi:10.1029/2005GL023640.

  • Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90104, doi:10.1016/j.gloplacha.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. Bi, 2009: Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys. Res. Lett.,36, L06709, doi:10.1029/2009GL037593.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett.,39, L01702, doi:10.1029/2011GL050087.

  • Hegerl, G. C., K. Hasselmann, U. Cubasch, J. Mitchell, E. Roeckner, R. Voss, and J. Waszkewitz, 1997: Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. Climate Dyn., 13, 613634, doi:10.1007/s003820050186.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Iles, C. E., G. C. Hegerl, A. P. Schurer, and X. Zhang, 2013: The effect of volcanic eruptions on global precipitation. J. Geophys. Res. Atmos., 118, 87708786, doi:10.1002/jgrd.50678.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, doi:10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Coauthors, 2006: The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci., 4, 126, doi:10.1016/S1571-9197(06)80003-0.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., R. Knutti, S. Solomon, and R. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett.,6, 034009, doi:10.1088/1748-9326/6/3/034009.

  • Marvel, K., and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 30119 306, doi:10.1073/pnas.1314382110.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, and F. Zwiers, 2008: Human-induced Arctic moistening. Science, 320, 518520, doi:10.1126/science.1153468.

  • Noake, K., D. Polson, G. Hegerl, and X. Zhang, 2012: Changes in seasonal land precipitation during the latter twentieth-century. Geophys. Res. Lett.,39, L03706, doi:10.1029/2011GL050405.

  • Osborn, T. J., 2004: Simulating the winter North Atlantic Oscillation: The roles of internal variability and greenhouse gas forcing. Climate Dyn., 22, 605623, doi:10.1007/s00382-004-0405-1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, doi:10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., V. Lucarini, X. Feng, A. Porporato, and S. ul Hasson, 2015: Analysis of rainfall seasonality from observations and climate models. Climate Dyn.,44, 3281–3301, doi:10.1007/s00382-014-2278-2.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and A. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pinto, J. G., E. Fröhlich, G. Leckebusch, and U. Ulbrich, 2007: Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Nat. Hazards Earth Syst. Sci., 7, 165175, doi:10.5194/nhess-7-165-2007.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., M. K. Karremann, K. Born, P. M. Della-Marta, and M. Klawa, 2012: Loss potentials associated with European windstorms under future climate conditions. Climate Res., 54, 120, doi:10.3354/cr01111.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and R. G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dyn., 27, 281299, doi:10.1007/s00382-006-0125-9.

    • Search Google Scholar
    • Export Citation
  • Sansom, P. G., D. B. Stephenson, C. A. Ferro, G. Zappa, and L. Shaffrey, 2013: Simple uncertainty frameworks for selecting weighting schemes and interpreting multimodel ensemble climate change experiments. J. Climate, 26, 40174037, doi:10.1175/JCLI-D-12-00462.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., H. Liu, N. Henderson, I. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, 27, 46554676, doi:10.1175/JCLI-D-13-00446.1.

    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., M. Latif, J. H. Jungclaus, and W. Park, 2008: Is the observed NAO variability during the instrumental record unusual? Geophys. Res. Lett.,35, L11701, doi:10.1029/2008GL033273.

  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, doi:10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452455, doi:10.1038/20905.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., 2003: Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett., 30, 1724, doi:10.1029/2003GL017324.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., 2010: Dynamical influences on European climate: An uncertain future. Philos. Trans. Roy. Soc., 368A, 37333756, doi:10.1098/rsta.2010.0040.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., M. K. Hawcroft, L. Shaffrey, E. Black, and D. J. Brayshaw, 2015: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Climate Dyn., doi:10.1007/s00382-014-2426-8, in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465, doi:10.1038/nature06025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 979 292 81
PDF Downloads 406 107 13