• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2014: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter10_FINAL.pdf.]

  • Casola, J. H., , L. Cuo, , B. Livneh, , D. P. Lettenmaier, , M. T. Stoelinga, , P. W. Mote, , and J. M. Wallace, 2009: Assessing the impacts of global warming on snowpack in the Washington Cascades. J. Climate, 22, 27582772, doi:10.1175/2008JCLI2612.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and et al. , 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940. [Available online at https://www.ipcc-wg1.unibe.ch/publications/wg1-ar4/ar4-wg1-chapter11.pdf.]

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter12_FINAL.pdf.]

  • Deser, C., , R. Knutti, , S. Solomon, , and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Phillips, , V. Bourdette, , and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527547, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Phillips, , M. A. Alexander, , and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., , and M. Scherer, 2011: Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change, 107, 615624, doi:10.1007/s10584-011-0112-y.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 44304440, doi:10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, E., , and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917935, doi:10.1007/s00382-008-0473-8.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , and J. F. B. Mitchell, 1995: Simulation of daily variability of surface temperature and precipitation over Europe in the current and 2 × CO2 climates using the UKMO climate model. Quart. J. Roy. Meteor. Soc., 121, 14511476, doi:10.1002/qj.49712152611.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.

  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 1–32. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., , N. A. Rayner, , R. O. Smith, , D. E. Parker, , and M. Saunby, 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and et al. , 2014: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter11_FINAL.pdf.]

  • Knutson, T. R., , F. Zeng, , and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, doi:10.1175/JCLI-D-12-00567.1.

    • Search Google Scholar
    • Export Citation
  • Laepple, T., , and P. H. Huybers, 2014: Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 16 68216 687, doi:10.1073/pnas.1412077111.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., 1976: Detection of trends in water quality data from records with dependent observations. Water Resour. Res., 12, 10371046, doi:10.1029/WR012i005p01037.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., , R. Knutti, , S. Solomon, , and R. W. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, doi:10.1088/1748-9326/6/3/034009.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. M., Jr., , B. Dzerdzeevskii, , H. Flohn, , W. L. Hofmeyr, , H. H. Lamb, , K. N. Rao, , and C. C. Walléen, 1966: Climatic change. WMO Tech. Note 79, 79 pp.

  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., , and P. D. Jones, 2014: The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data, 6, 6168, doi:10.5194/essd-6-61-2014.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , T. M. L. Wigley, , J. S. Boyle, , D. J. Gaffen, , J. J. Hnilo, , D. Nychka, , D. E. Parker, , and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , T. Bischoff, , and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, doi:10.1175/JCLI-D-14-00632.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, doi:10.1038/nclimate2268.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., , Y. Zhang, , and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780783, doi:10.1126/science.270.5237.780.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , Q. Fu, , B. V. Smoliak, , P. Lin, , and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Deser, , B. V. Smoliak, , and A. S. Phillips, 2015: Attribution of climate change in the presence of internal variability. Climate Change: Multidecadal and Beyond, C. P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 6, World Scientific, in press.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 543 538 54
PDF Downloads 303 303 46

Quantifying the Role of Internal Climate Variability in Future Climate Trends

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Internal variability in the climate system gives rise to large uncertainty in projections of future climate. The uncertainty in future climate due to internal climate variability can be estimated from large ensembles of climate change simulations in which the experiment setup is the same from one ensemble member to the next but for small perturbations in the initial atmospheric state. However, large ensembles are invariably computationally expensive and susceptible to model bias.

Here the authors outline an alternative approach for assessing the role of internal variability in future climate based on a simple analytic model and the statistics of the unforced climate variability. The analytic model is derived from the standard error of the regression and assumes that the statistics of the internal variability are roughly Gaussian and stationary in time. When applied to the statistics of an unforced control simulation, the analytic model provides a remarkably robust estimate of the uncertainty in future climate indicated by a large ensemble of climate change simulations. To the extent that observations can be used to estimate the amplitude of internal climate variability, it is argued that the uncertainty in future climate trends due to internal variability can be robustly estimated from the statistics of the observed climate.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David W. J. Thompson, Department of Atmospheric Science, Campus Delivery 1782, Colorado State University, Fort Collins, CO 80523. E-mail: davet@atmos.colostate.edu

Abstract

Internal variability in the climate system gives rise to large uncertainty in projections of future climate. The uncertainty in future climate due to internal climate variability can be estimated from large ensembles of climate change simulations in which the experiment setup is the same from one ensemble member to the next but for small perturbations in the initial atmospheric state. However, large ensembles are invariably computationally expensive and susceptible to model bias.

Here the authors outline an alternative approach for assessing the role of internal variability in future climate based on a simple analytic model and the statistics of the unforced climate variability. The analytic model is derived from the standard error of the regression and assumes that the statistics of the internal variability are roughly Gaussian and stationary in time. When applied to the statistics of an unforced control simulation, the analytic model provides a remarkably robust estimate of the uncertainty in future climate indicated by a large ensemble of climate change simulations. To the extent that observations can be used to estimate the amplitude of internal climate variability, it is argued that the uncertainty in future climate trends due to internal variability can be robustly estimated from the statistics of the observed climate.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David W. J. Thompson, Department of Atmospheric Science, Campus Delivery 1782, Colorado State University, Fort Collins, CO 80523. E-mail: davet@atmos.colostate.edu
Save