• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., , and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden-Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , E. D. Maloney, , A. H. Sobel, , and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, doi:10.1175/JAS-D-13-0240.1.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., , and D. L. Hartmann, 1993: Tropical intraseasonal oscillation in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., , H. J. J. Jonker, , A. P. Siebesma, , and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62, 27702789, doi:10.1175/JAS3506.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and A. D. Del Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32, 355369, doi:10.1007/s00382-008-0386-6.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., , and M. Sugiyama, 2013: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part I: Comparison with observation and reanalysis. J. Atmos. Sci., 70, 39203939, doi:10.1175/JAS-D-13-034.1.

    • Search Google Scholar
    • Export Citation
  • Davies, L., , R. S. Plant, , and S. H. Derbyshire, 2009: A simple model of convection with memory. J. Geophys. Res., 114, D17202, doi:10.1029/2008JD011653.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2012: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656, doi:10.1007/s10712-011-9148-9.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M.-S. Yao, , W. Kovari, , and K. K.-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304, doi:10.1175/1520-0442(1996)009<0270:APCWPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , W. Kovari, , M.-S. Yao, , and J. Jonas, 2005: Cumulus microphysics and climate sensitivity. J. Climate, 18, 23762387, doi:10.1175/JCLI3413.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M.-S. Yao, , and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y. Chen, , D. Kim, , and M.-S. Yao, 2012a: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , J. Wu, , and Y. Chen, 2012b: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688, doi:10.1175/JCLI-D-11-00422.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M.-S. Yao, , J. Wu, , and A. Wolf, 2013: Cold pools—A first step in representing convective organization in GCMs. [Available online at http://asr.science.energy.gov/meetings/stm/posters/view?id=784.]

  • DePasquale, A., , C. Schumacher, , and A. Rapp, 2014: Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE. J. Geophys. Res. Atmos., 119, 63476367, doi:10.1002/2013JD021031.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J.-P. Grandpeix, , J.-M. Piriou, , J.-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and et al. , 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., , S. Hagos, , A. K. Rowe, , C. D. Burleyson, , M. N. Martini, , and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE-DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, doi:10.1002/2014MS000384, in press.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2014: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., , P. Roundy, , C. Schreck, , A. Vintzileos, , and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., , and J. P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897, doi:10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 5372, doi:10.1002/qj.49712757104.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , R. Kershaw, , and P. M. Inness, 1997: Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183, doi:10.1002/qj.49712354103.

    • Search Google Scholar
    • Export Citation
  • Haertel, P., , K. Straub, , and A. Budsock, 2015: Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2461, in press.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, doi:10.1175/2011JCLI3803.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, doi:10.1002/2013MS000272.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , and C. S. Bretherton, 2011: Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys., 11, 10 38910 406, doi:10.5194/acp-11-10389-2011.

    • Search Google Scholar
    • Export Citation
  • Houston, A. L., , and R. B. Wilhelmson, 2011: The dependence of storm longevity on the pattern of deep convection initiation in a low-shear environment. Mon. Wea. Rev., 139, 31253138, doi:10.1175/MWR-D-10-05036.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., , J.-L. Lin, , W. Wang, , D. Kim, , T. Shinoda, , and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., , and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254, doi:10.1175/1520-0450(2003)042<1234:RAMCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., , and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117, doi:10.1175/JCLI3722.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, doi:10.1002/2014JD022375.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2013: Structure and properties of Madden-Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., , J. Stout, , M. Summers, , and E. J. Zipser, 2010: Do the tallest convective cells over the tropical ocean have slow updrafts? Mon. Wea. Rev., 138, 16511672, doi:10.1175/2009MWR3030.1.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and et al. , 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. H. Sobel, , and I.-S. Kang, 2011a: A mechanism denial study on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 3, M12007, doi:10.1029/2011MS000081.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. H. Sobel, , E. D. Maloney, , D. M. W. Frierson, , and I.-S. Kang, 2011b: A systematic relationship between intraseasonal variability and mean state bias. J. Climate, 24, 55065520, doi:10.1175/2011JCLI4177.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. H. Sobel, , A. Del Genio, , Y. Chen, , S. J. Camargo, , M.-S. Yao, , M. Kelley, , and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. D. Del Genio, , and M.-S. Yao, 2013: Moist convection scheme in Model E2. 9 pp. [Available online at http://www.giss.nasa.gov/tools/modelE/docs/kim_moistconvection.pdf.]

  • Kim, D., , J.-S. Kug, , and A. H. Sobel, 2014: Propagating versus non-propagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , M.-S. Ahn, , I.-S. Kang, , and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, doi:10.1175/JCLI-D-14-00767.1, in press.

  • Kiranmayi, L., , and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., and et al. , 2015a: Vertical structure and physical processes of the Madden-Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. J. Geophys. Res. Atmos., 120, 46904717, doi:10.1002/2014JD022374.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., , X. Jiang, , P. K. Xavier, , J. Petch, , D. Waliser, , and S. J. Woolnough, 2015b: Vertical structure and physical processes of the Madden-Julian oscillation: Synthesis and summary. J. Geophys. Res. Atmos., 120, 46714689, doi:10.1002/2015JD023196.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and H.-T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518, doi:10.1175/2009JCLI2920.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062, doi:10.1175/1520-0469(2004)061<2050:RBOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and et al. , 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715, doi:10.1175/1520-0469(1996)053<0695:KATCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, D., , and Z. Kuang, 2011: Modulation of radiative heating by the Madden-Julian oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophys. Res. Lett., 38, L21813, doi:10.1029/2011GL049734.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., , and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Mauritsen, T., and et al. , 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , C. N. Long, , and D. M. Flynn, 2005: Impact of island-induced clouds on surface measurements: Analysis of the ARM Nauru Island Effect Study data. J. Appl. Meteor., 44, 10451065, doi:10.1175/JAM2241.1.

    • Search Google Scholar
    • Export Citation
  • Morita, J., , Y. N. Takayabu, , S. Shige, , and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42, 107126, doi:10.1016/j.dynatmoce.2006.02.002.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, doi:10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, S., 2014: A unified convection scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 39023930, doi:10.1175/JAS-D-13-0233.1.

    • Search Google Scholar
    • Export Citation
  • Petch, J., , D. Waliser, , X. Jiang, , P. Xavier, , and S. Woolnough, 2011: A global model intercomparison of the physical processes associated with the Madden–Julian oscillation. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 35.

    • Search Google Scholar
    • Export Citation
  • Piriou, J. M., , J. L. Redelsperger, , J. F. Geleyn, , J. P. Lafore, , and F. Guichard, 2007: An approach for convective parameterization with memory: Separating microphysics and transport in grid-scale equations. J. Atmos. Sci., 64, 41274139, doi:10.1175/2007JAS2144.1.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., , and R. A. Houze Jr., 2013: The cloud population and onset of the Madden-Julian oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., , and R. A. Houze Jr., 2015: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 4783–4805, doi:10.1002/2014JD022961.

  • Qian, L., , G. S. Young, , and W. M. Frank, 1998: A convective wake parameterization scheme for use in general circulation models. Mon. Wea. Rev., 126, 456469, doi:10.1175/1520-0493(1998)126<0456:ACWPSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., , B. E. Mapes, , and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, doi:10.1175/JAS-D-11-030.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., , and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, doi:10.1175/JAS-D-14-0218.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., , and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, doi:10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , D. Hernández-Deckers, , M. Colin, , and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, doi:10.1175/JAS-D-12-0220.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and E. D. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , E. D. Maloney, , G. Bellon, , and D. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , S. Wang, , and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Song, H., , W. Lin, , Y. Lin, , A. Wolf, , R. Neggers, , L. J. Donner, , A. D. Del Genio, , and Y. Liu, 2013: Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site. J. Climate, 26, 54675492, doi:10.1175/JCLI-D-12-00263.1.

    • Search Google Scholar
    • Export Citation
  • Stanfield, R. E., , X. Dong, , B. Xi, , A. Kennedy, , A. D. Del Genio, , P. Minnis, , and J. Jiang, 2014: Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part I: Cloud fraction and properties. J. Climate, 27, 41894208, doi:10.1175/JCLI-D-13-00558.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , P. J. Webster, , R. H. Johnson, , R. Engelen, , and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, H., and et al. , 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res. Atmos., 118, 27622780, doi:10.1029/2012JD018575.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., , K. Yamazaki, , A. Kitoh, , and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tromeur, E., , and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the MJO. J. Climate, 23, 18371853, doi:10.1175/2009JCLI3240.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 30973112, doi:10.1175/2010JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 87038718, doi:10.1029/96JC01751.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S., , R. T. Cederwall, , and M. Zhang, 2004: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, doi:10.1029/2003JD004045.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yao, M.-S., , and Y. Cheng, 2012: Cloud simulations in response to turbulence parameterizations in the GISS Model E GCM. J. Climate, 25, 49634974, doi:10.1175/JCLI-D-11-00399.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , X. Jin, , and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , J. Gottschalck, , E. D. Maloney, , M. W. Moncrieff, , F. Vitart, , D. E. Waliser, , B. Wang, , and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., , J. L. Lin, , R. T. Cederwall, , J. J. Yio, , and S. C. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129, 295311, doi:10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., , and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 17
PDF Downloads 50 50 8

Constraints on Cumulus Parameterization from Simulations of Observed MJO Events

View More View Less
  • 1 NASA Goddard Institute for Space Studies, New York, New York
  • | 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 3 Trinnovim LLC, Institute for Space Studies, New York, New York
  • | 4 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden–Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.

Corresponding author address: Anthony D. Del Genio, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: anthony.d.delgenio@nasa.gov

Abstract

Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden–Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.

Corresponding author address: Anthony D. Del Genio, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: anthony.d.delgenio@nasa.gov
Save