Projected Changes in the Annual Cycle of High-Intensity Precipitation Events over West Africa for the Late Twenty-First Century

Mouhamadou Bamba Sylla Competence Center, West African Science Service Center on Climate Change and Adapted Land Use, Ouagadougou, Burkina Faso

Search for other papers by Mouhamadou Bamba Sylla in
Current site
Google Scholar
PubMed
Close
,
Filippo Giorgi Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Search for other papers by Filippo Giorgi in
Current site
Google Scholar
PubMed
Close
,
Jeremy S. Pal Department of Civil Engineering and Environmental Science, Loyola Marymount University, Los Angeles, California

Search for other papers by Jeremy S. Pal in
Current site
Google Scholar
PubMed
Close
,
Peter Gibba Competence Center, West African Science Service Center on Climate Change and Adapted Land Use, Ouagadougou, Burkina Faso, and Graduate Research Program on West African Climate System, West African Science Service Center on Climate Change and Adapted Land Use, Akure, Nigeria

Search for other papers by Peter Gibba in
Current site
Google Scholar
PubMed
Close
,
Ibourahima Kebe Competence Center, West African Science Service Center on Climate Change and Adapted Land Use, Ouagadougou, Burkina Faso, and Graduate Research Program on West African Climate System, West African Science Service Center on Climate Change and Adapted Land Use, Akure, Nigeria

Search for other papers by Ibourahima Kebe in
Current site
Google Scholar
PubMed
Close
, and
Michel Nikiema Competence Center, West African Science Service Center on Climate Change and Adapted Land Use, Ouagadougou, Burkina Faso, and Graduate Research Program on West African Climate System, West African Science Service Center on Climate Change and Adapted Land Use, Akure, Nigeria

Search for other papers by Michel Nikiema in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this study, the response of the annual cycle of high-intensity daily precipitation events over West Africa to anthropogenic greenhouse gas for the late twenty-first century is investigated using an ensemble of high-resolution regional climate model experiments. For the present day, the RCM ensemble substantially improves the simulation of the annual cycle for various precipitation statistics compared to the driving Earth system models. The late-twenty-first-century projected changes in mean precipitation exhibit a delay of the monsoon season, consistent with previous studies. In addition, these projections indicate a prevailing decrease in frequency but increase in intensity of very wet events, particularly in the premonsoon and early mature monsoon stages, more pronounced over the Sahel and in RCP8.5 than the Gulf of Guinea and in RCP4.5. This is due to the presence of stronger moisture convergence in the boundary layer that sustains intense precipitation once convection is initiated. The premonsoon season experiences the largest changes in daily precipitation statistics, particularly toward an increased risk of drought associated with a decrease in mean precipitation and frequency of wet days and an increased risk of flood associated with very wet events. Both of these features can produce significant stresses on important sectors such as agriculture and water resources at a time of the year (e.g., the monsoon onset) where such stresses can have stronger impacts. The results thus point toward the importance of analyzing changes of precipitation characteristics as a function of the regional seasonal and subseasonal cycles of rainfall.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00854.s1.

Corresponding author address: Dr. Mouhamadou Bamba Sylla, WASCAL Competence Center, 06 P.O. Box 9507 Ouagadougou, Burkina Faso. E-mail: syllabamba@yahoo.fr; syllab@wascal.org

Abstract

In this study, the response of the annual cycle of high-intensity daily precipitation events over West Africa to anthropogenic greenhouse gas for the late twenty-first century is investigated using an ensemble of high-resolution regional climate model experiments. For the present day, the RCM ensemble substantially improves the simulation of the annual cycle for various precipitation statistics compared to the driving Earth system models. The late-twenty-first-century projected changes in mean precipitation exhibit a delay of the monsoon season, consistent with previous studies. In addition, these projections indicate a prevailing decrease in frequency but increase in intensity of very wet events, particularly in the premonsoon and early mature monsoon stages, more pronounced over the Sahel and in RCP8.5 than the Gulf of Guinea and in RCP4.5. This is due to the presence of stronger moisture convergence in the boundary layer that sustains intense precipitation once convection is initiated. The premonsoon season experiences the largest changes in daily precipitation statistics, particularly toward an increased risk of drought associated with a decrease in mean precipitation and frequency of wet days and an increased risk of flood associated with very wet events. Both of these features can produce significant stresses on important sectors such as agriculture and water resources at a time of the year (e.g., the monsoon onset) where such stresses can have stronger impacts. The results thus point toward the importance of analyzing changes of precipitation characteristics as a function of the regional seasonal and subseasonal cycles of rainfall.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00854.s1.

Corresponding author address: Dr. Mouhamadou Bamba Sylla, WASCAL Competence Center, 06 P.O. Box 9507 Ouagadougou, Burkina Faso. E-mail: syllabamba@yahoo.fr; syllab@wascal.org

Supplementary Materials

    • Supplemental Materials (DOCX 9.88 MB)
Save
  • Abiodun, B. J., J. S. Pal, E. A. Afiesimama, W. J. Gutowski, and A. Adedoyin, 2008: Simulation of West African monsoon using the RegCM3. Part II: Impacts of deforestation and desertification. Theor. Appl. Climatol., 93, 245–261, doi:10.1007/s00704-007-0333-1.

    • Search Google Scholar
    • Export Citation
  • Abiodun, B. J., K. A. Lawal, A. T. Salami, and A. A. Abatan, 2013: Potential influences of global warming on future climate and extreme events in Nigeria. Reg. Environ. Change, 13, 477–491, doi:10.1007/s10113-012-0381-7.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Afiesimama, A. E., J. S. Pal, B. J. Abiodun, W. J. Gutowski, and A. Adedoyin, 2006: Simulation of West African monsoon using the RegCM3. Part I: Model validation and interannual variability. Theor. Appl. Climatol., 86, 23–37, doi:10.1007/s00704-005-0202-8.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Anyamba, A., J. L. Small, S. C. Britch, C. J. Tucker, E. W. Pak, C. A. Reynolds, J. Crutchfield, and K. J. Linthicum, 2014: Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS ONE, 9, e92538, doi:10.1371/journal.pone.0092538.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and A. H. Sobel, 2009: Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys. Res. Lett., 36, L23707, doi:10.1029/2009GL041303.

    • Search Google Scholar
    • Export Citation
  • Browne, N. A. K., and M. B. Sylla, 2012: Regional climate model sensitivity to domain size for the simulation of the West African summer monsoon rainfall. Int. J. Geophys., 2012, 625831, doi:10.1155/2012/625831.

    • Search Google Scholar
    • Export Citation
  • Chen, H. P., 2013: Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin. Sci. Bull., 58, 1462–1472, doi:10.1007/s11434-012-5612-2.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 1165–1184, doi:10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diallo, I., M. B. Sylla, F. Giorgi, A. T. Gaye, and M. Camara, 2012: Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the early 21st century. Int. J. Geophys., 2012, 972896, doi:10.1155/2012/972896.

    • Search Google Scholar
    • Export Citation
  • Diallo, I., M. B. Sylla, M. Camara, and A. T. Gaye, 2013: Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor. Appl. Climatol., 113, 351–362, doi:10.1007/s00704-012-0791-y.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Felice, 1998: Evidence of two regimes of easterly waves over West Africa and the tropical Atlantic. Geophys. Res. Lett., 25, 2805–2808, doi:10.1029/98GL02152.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 2247–2267, doi:10.1175/JCLI-D-12-00150.1.

    • Search Google Scholar
    • Export Citation
  • Elguindi, N., F. Giorgi, and U. Turuncoglu, 2014: Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the Phase I CREMA. Climatic Change, 125, 7–21, doi:10.1007/s10584-013-0935-9.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2329, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782, doi:10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gbobaniyi, E., and Coauthors, 2014: Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol., 34, 2241–2257, doi:10.1002/joc.3834.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M., and Coauthors, 2012a: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: The historical experiment, served by ESGF. DKRZ World Data Center for Climate, accessed 13 May 2014, doi:10.1594/WDCC/CMIP5.MXMRhi.

  • Giorgetta, M., and Coauthors, 2012b: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: The rcp45 experiment, served by ESGF. DKRZ World Data Center for Climate, accessed 13 May 2014, doi:10.1594/WDCC/CMIP5.MXMRr4.

  • Giorgetta, M., and Coauthors, 2012c: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: The rcp85 experiment, served by ESGF. DKRZ World Data Center for Climate, accessed 13 May 2014, doi:10.1594/WDCC/CMIP5.MXMRr8.

  • Giorgi, F., 2014: Introduction to the special issue: the phase I CORDEX RegCM4 hyper-matrix (CREMA) experiment. Climatic Change, 125, 1–5, doi:10.1007/s10584-014-1166-4.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175–183.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., E.-S. Im, E. Coppola, N. S. Diffenbaugh, X. J. Gao, L. Mariotti, and Y. Shi, 2011: Higher hydroclimatic intensity with global warming. J. Climate, 24, 5309–5324, doi:10.1175/2011JCLI3979.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7–29, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., E. Coppola, and F. Raffaele, 2014a: A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations. J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD022238.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2014b: Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Climatic Change, 125, 39–51, doi:10.1007/s10584-014-1117-0.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Tech. Note NCAR/TN-398+STR, 121 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-214.pdf.]

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., E. I. F. De Bruin, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575, doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at One-Degree Daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. T. Gaye, and B. Sylla, 2005: Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys. Res. Lett., 32, L22705, doi:10.1029/2005GL024225.

    • Search Google Scholar
    • Export Citation
  • Jones, C., F. Giorgi, and G. Asrar, 2011a: The Coordinated Regional Downscaling Experiment: CORDEX, an international downscaling link to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 34–40.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and Coauthors, 2011b: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543–570, doi:10.5194/gmd-4-543-2011.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). Tech. Note NCAR/TN-420+STR, 152 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-231.pdf.]

  • Klutse, N. A. B., and Coauthors, 2015: Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor. Appl. Climatol., doi:10.1007/s00704-014-1352-3.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., M. Biasutti, N. S. Diffenbaugh, J.-E. Lee, M. J. Niznik, and K. L. Findell, 2012: Amplification of wet and dry month occurrence over tropical land regions in response to global warming. J. Geophys. Res., 117, D11106, doi:10.1029/2012JD017499.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. Bänziger, C. Magorokosho, and B. Vivek, 2011: Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Climate Change, 1, 42–45, doi:10.1038/nclimate1043.

    • Search Google Scholar
    • Export Citation
  • Ly, M., S. B. Traore, A. Alhassane, and B. Sarr, 2013: Evolution of some observed climate extremes in the West African Sahel. Wea. Climate Extremes, 1, 19–25, doi:10.1016/j.wace.2013.07.005.

    • Search Google Scholar
    • Export Citation
  • Mariotti, L., E. Coppola, M. B. Sylla, F. Giorgi, and C. Piani, 2011: Regional climate model simulation of projected 21st century climate change over an all-Africa domain: Comparison analysis of nested and driving model results. J. Geophys. Res., 116, D15111, doi:10.1029/2010JD015068.

    • Search Google Scholar
    • Export Citation
  • Mariotti, L., I. Diallo, E. Coppola, and F. Giorgi, 2014: Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Climatic Change, 125, 53–65, doi:10.1007/s10584-014-1097-0.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and C. D. Thorncroft, 2006: Intense convective systems in West Africa and their relationship to the African easterly jet. Quart. J. Roy. Meteor. Soc., 132, 163–176, doi:10.1256/qj.05.55.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • New, M., and Coauthors, 2006: Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res., 111, D14102, doi:10.1029/2005JD006289.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 6057–6078, doi:10.1175/JCLI-D-11-00375.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Paeth, H., and Coauthors, 2011: Progress in regional downscaling of West African precipitation. Atmos. Sci. Lett., 12, 75–82, doi:10.1002/asl.306.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105, 29 579–29 594, doi:10.1029/2000JD900415.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., F. Giorgi, and X. Bi, 2004: Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys. Res. Lett., 31, L13202, doi:10.1029/2004GL019836.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–1409, doi:10.1175/BAMS-88-9-1395.

    • Search Google Scholar
    • Export Citation
  • Panthou, G., T. Vischel, and T. Lebel, 2014: Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol., 34, 3998–4006, doi:10.1002/joc.3984.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, M. Zampieri, and A. Navarra, 2013: Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Climate, 26, 7902–7911, doi:10.1175/JCLI-D-12-00850.1.

    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Camargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 7328–7351, doi:10.1175/JCLI-D-12-00726.1.

    • Search Google Scholar
    • Export Citation
  • Shongwe, M. E., G. J. van Oldenborgh, B. J. J. M. van den Hurk, B. de Boer, C. A. S. Coelho, and M. K. van Aalst, 2009: Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J. Climate, 22, 3819–3837, doi:10.1175/2009JCLI2317.1.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 2473–2493, doi:10.1002/jgrd.50188.

    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Tsiang, B. Rajaratnam, and N. S. Diffenbaugh, 2014: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Climate Change, 4, 456–461, doi:10.1038/nclimate2208.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. L., J. S. Pal, S. A. Rauscher, J. L. Bell, N. S. Diffenbaugh, A. Boone, L. C. Sloan, and F. Giorgi, 2009: Land surface coupling in regional climate simulations of the West African monsoon. Climate Dyn., 33, 869–892, doi:10.1007/s00382-009-0543-6.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., A. Dell’Aquila, P. M. Ruti, and F. Giorgi, 2010a: Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int. J. Climatol., 30, 1865–1883.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., A. T. Gaye, G. S. Jenkins, J. S. Pal, and F. Giorgi, 2010b: Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. J. Geophys. Res., 115, D16108, doi:10.1029/2009JD012983.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., F. Giorgi, P. M. Ruti, S. Calmanti, and A. Dell’Aquila, 2011: The impact of deep convection on the West African summer monsoon climate: A regional climate model sensitivity study. Quart. J. Roy. Meteor. Soc., 137, 1417–1430, doi:10.1002/qj.853.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., A. T. Gaye, and G. S. Jenkins, 2012: On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over West Africa in a regional climate model projections. Int. J. Geophys., 2012, 981649, doi:10.1155/2012/981649.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., I. Diallo, and J. S. Pal, 2013a: West African monsoon in state-of-the-science regional climate models. Climate Variability: Regional and Thematic Patterns, A. Tarhule, Ed., InTech, 3–36, doi:10.5772/55140.

  • Sylla, M. B., F. Giorgi, E. Coppola, and L. Mariotti, 2013b: Uncertainties in daily rainfall over Africa: Assessment of observation products and evaluation of a regional climate model simulation. Int. J. Climatol., 33, 1805–1817, doi:10.1002/joc.3551.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Toreti, A., and Coauthors, 2013: Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project phase 5 models. Geophys. Res. Lett., 40, 4887–4892, doi:10.1002/grl.50940.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2012: Mid-twenty-first-century changes in extreme events over northern and tropical Africa. J. Climate, 25, 5748–5767, doi:10.1175/JCLI-D-11-00693.1.

    • Search Google Scholar
    • Export Citation
  • Zaroug, M. A. H., M. B. Sylla, F. Giorgi, E. A. B. Eltahir, and P. K. Aggarwal, 2013: A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor. Appl. Climatol., 113, 63–81, doi:10.1007/s00704-012-0751-6.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628–2644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851–870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and Coauthors, 2013: Climate extremes: Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. Climate Science for Serving Society: Research, Modeling and Prediction Priorities, G. R. Asrar and J. W. Hurrell, Eds., Springer, 339–389, doi:10.1007/978-94-007-6692-1_13.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3653 1485 253
PDF Downloads 865 213 20