• Balmaseda, M. A., , K. Mogensen, , and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , M. M. Holland, , E. C. Hunke, , and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, doi:10.1175/JCLI3428.1.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., , K. C. Armour, , C. M. Bitz, , and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, doi:10.1175/2010JCLI3775.1.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., , and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, doi:10.1175/JCLI-D-11-00209.1.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., , D. Salas y Mélia, , A. Voldoire, , M. Déqué, , and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, doi:10.1175/JCLI-D-12-00612.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000. Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2 (January 1978–December 2013). National Snow and Ice Data Center, Boulder, CO, digital media, accessed 17 November 2014, doi:10.5067/J6JQLS9EJ5HU.

  • Day, J. J., , S. Tietsche, , and E. Hawkins, 2014: Pan-Arctic and regional sea ice predictability: Initialization month dependence. J. Climate, 27, 43714390, doi:10.1175/JCLI-D-13-00614.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E. T., , E. C. Hunke, , and M. M. Holland, 2008: Comment on “On the reliability of simulated Arctic sea ice in global climate models” by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer. Geophys. Res. Lett., 35, L04501, doi:10.1029/2007GL031325.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , E. Hunter, , J. R. Key, , and X. Wang, 2005: Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett., 32, L21501, doi:10.1029/2005GL024376.

    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., , and L.-B. Tremblay, 2008. Arctic cloud properties and radiative forcing from observations and their role in sea ice decline predicted by the NCAR CCSM3 model during the 21st century. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, E. T. DeWeaver et al., Eds., Amer. Geophys. Union, 47–62.

  • Holland, M. M., , D. A. Bailey, , and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, doi:10.1007/s00382-010-0792-4.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and et al. , 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., , R. G. Graversen, , and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea ice extent. Nat. Climate Change, 3, 744748, doi:10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., , R. G. Graversen, , T. Economou, , and M. Tjernström, 2014: The importance of spring atmospheric conditions for predictions of the Arctic summer sea ice extent. Geophys. Res. Lett., 41, 52885296, doi:10.1002/2014GL060826.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , T. L’Ecuyer, , A. Gettelman, , G. Stephens, , and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., , J. Zhang, , A. J. Schweiger, , and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., , M. Wensnahan, , A. Schweiger, , and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and M. Wang, 2013: When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett., 40, 20972101, doi:10.1002/grl.50316.

    • Search Google Scholar
    • Export Citation
  • Schröder, D., , D. L. Feltham, , D. Flocco, , and M. Tsamados, 2014: September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Climate Change, 4, 353357, doi:10.1038/nclimate2203.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , M. M. Holland, , and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., 1984: Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Quart. J. Roy. Meteor. Soc., 110, 747764, doi:10.1002/qj.49711046511.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , J. C. Fyfe, , G. M. Flato, , V. V. Kharin, , and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, doi:10.1002/grl.50129.

    • Search Google Scholar
    • Export Citation
  • Stephenson, S. R., , L. C. Smith, , L. W. Brigham, , and J. A. Agnew, 2013: Projected 21st-century changes to Arctic marine access. Climatic Change, 118, 885899, doi:10.1007/s10584-012-0685-0.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., , F. J. Doblas-Reyes, , B. Wouters, , and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , M. Chen, , and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, doi:10.1175/MWR-D-12-00057.1.

    • Search Google Scholar
    • Export Citation
  • Zygmuntowska, M., , T. Mauritsen, , J. Quaas, , and L. Kaleschke, 2012: Arctic clouds and surface radiation—A critical comparison of satellite retrievals and the ERA-Interim reanalysis. Atmos. Chem. Phys., 12, 66676677, doi:10.5194/acp-12-6667-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 10
PDF Downloads 34 34 8

Arctic Energy Budget in Relation to Sea Ice Variability on Monthly-to-Annual Time Scales

View More View Less
  • 1 Royal Netherlands Meteorological Institute, De Bilt, and Wageningen University, Wageningen, Netherlands
© Get Permissions
Restricted access

Abstract

The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study analyzes the natural variability of Arctic sea ice from an energy budget perspective, using 15 climate models from phase 5 of CMIP (CMIP5), and compares these results to reanalysis data. The authors quantify the persistence of sea ice anomalies and the cross correlation with the surface and top-of-atmosphere energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal ice–albedo feedback, through which sea ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of the ocean lies mainly in storing heat content anomalies in spring and releasing them in autumn. Ocean heat flux variations play only a minor role. Confirming a previous (observational) study, the authors demonstrate that there is no direct atmospheric response of clouds to spring sea ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud–ice feedback in late spring and summer, but there is a cloud–ice feedback in autumn, which strengthens the ice–albedo feedback. Anomalies in insolation are positively correlated with sea ice variability. This is primarily a result of reduced multiple reflection of insolation due to an albedo decrease. This effect counteracts the ice-albedo effect up to 50%. ERA-Interim and Ocean Reanalysis System 4 (ORAS4) confirm the main findings from the climate models.

Corresponding author address: F. Krikken, Wageningen University, Droevendaalsesteeg 3, Wageningen 6708PB, The Netherlands. E-mail: folmer.krikken@wur.nl

Abstract

The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study analyzes the natural variability of Arctic sea ice from an energy budget perspective, using 15 climate models from phase 5 of CMIP (CMIP5), and compares these results to reanalysis data. The authors quantify the persistence of sea ice anomalies and the cross correlation with the surface and top-of-atmosphere energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal ice–albedo feedback, through which sea ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of the ocean lies mainly in storing heat content anomalies in spring and releasing them in autumn. Ocean heat flux variations play only a minor role. Confirming a previous (observational) study, the authors demonstrate that there is no direct atmospheric response of clouds to spring sea ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud–ice feedback in late spring and summer, but there is a cloud–ice feedback in autumn, which strengthens the ice–albedo feedback. Anomalies in insolation are positively correlated with sea ice variability. This is primarily a result of reduced multiple reflection of insolation due to an albedo decrease. This effect counteracts the ice-albedo effect up to 50%. ERA-Interim and Ocean Reanalysis System 4 (ORAS4) confirm the main findings from the climate models.

Corresponding author address: F. Krikken, Wageningen University, Droevendaalsesteeg 3, Wageningen 6708PB, The Netherlands. E-mail: folmer.krikken@wur.nl
Save