Subseasonal Variability of Precipitation in China during Boreal Winter

Yonghong Yao School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Yonghong Yao in
Current site
Google Scholar
PubMed
Close
,
Hai Lin Recherche en Prévision Numérique Atmosphérique, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Hai Lin in
Current site
Google Scholar
PubMed
Close
, and
Qigang Wu School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Qigang Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using pentad data of the Northern Hemisphere extended winter (November–March) from 1979 to 2012 derived from the daily rainfall of the National Meteorological Information Center of China, subseasonal variability of precipitation in China is analyzed. The two dominant modes of subseasonal variability are identified with an empirical orthogonal function (EOF) analysis. The first EOF mode (EOF1) is characterized by a monopole in South China, whereas the second EOF mode (EOF2) has a meridional dipole structure with opposite precipitation anomalies over the Yangtze River basin and the coastal area of South China. These two modes tend to have a phase shift to each other in both space and time, indicating that part of their variability represents a southward-propagating pattern.

The subseasonal variability is decomposed into two components: one related to the Madden–Julian oscillation (MJO) and the other independent of MJO. It is found that the MJO contributes to about 10% of the precipitation variability in South China. EOF1 is associated with MJO phase 3, corresponding to enhanced equatorial convection in the Indian Ocean and depressed convection in the western Pacific, while EOF2 is related to MJO phase 5 when the enhanced tropical convection moves to the Maritime Continent region. Subseasonal precipitation variability in China that is independent of the MJO is especially affected by processes including tropical convection variability and the “cold surge” phenomenon or the development of a Siberian high and cold-air outbreak in East Asia associated with a wave train from the North Atlantic.

Corresponding author address: Hai Lin, Recherche en Prévision Numérique Atmosphérique, Environment Canada, 2121 Trans-Canada, Dorval QC H9B 1J3, Canada. E-mail: hai.lin@ec.gc.ca

Abstract

Using pentad data of the Northern Hemisphere extended winter (November–March) from 1979 to 2012 derived from the daily rainfall of the National Meteorological Information Center of China, subseasonal variability of precipitation in China is analyzed. The two dominant modes of subseasonal variability are identified with an empirical orthogonal function (EOF) analysis. The first EOF mode (EOF1) is characterized by a monopole in South China, whereas the second EOF mode (EOF2) has a meridional dipole structure with opposite precipitation anomalies over the Yangtze River basin and the coastal area of South China. These two modes tend to have a phase shift to each other in both space and time, indicating that part of their variability represents a southward-propagating pattern.

The subseasonal variability is decomposed into two components: one related to the Madden–Julian oscillation (MJO) and the other independent of MJO. It is found that the MJO contributes to about 10% of the precipitation variability in South China. EOF1 is associated with MJO phase 3, corresponding to enhanced equatorial convection in the Indian Ocean and depressed convection in the western Pacific, while EOF2 is related to MJO phase 5 when the enhanced tropical convection moves to the Maritime Continent region. Subseasonal precipitation variability in China that is independent of the MJO is especially affected by processes including tropical convection variability and the “cold surge” phenomenon or the development of a Siberian high and cold-air outbreak in East Asia associated with a wave train from the North Atlantic.

Corresponding author address: Hai Lin, Recherche en Prévision Numérique Atmosphérique, Environment Canada, 2121 Trans-Canada, Dorval QC H9B 1J3, Canada. E-mail: hai.lin@ec.gc.ca
Save
  • Boyle, J. S., and T. J. Chen, 1987: Synoptic aspects of the wintertime East Asian monsoon. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 125–160.

  • Bretherton, C., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., C. H. Liu, and H. C. Kuo, 2003: Typhoon Vamei: An equatorial tropical cyclone formation. Geophys. Res. Lett., 30, 1150, doi:10.1029/2002GL016365.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. The Asian Monsoon, B. Wang, Ed., Praxis, 89–127.

  • Chen, W., H.-F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860, doi:10.1007/s00376-000-0042-5.

    • Search Google Scholar
    • Export Citation
  • Gao, H., and Coauthors, 2008: Analysis of the severe cold surge, ice-snow and frozen disasters in south China during January 2008: II. Possible climatic causes (in Chinese). Meteor. Mon., 101106.

    • Search Google Scholar
    • Export Citation
  • He, J., H. Lin, and Z. Wu, 2011: Another look at influences of the Madden-Julian oscillation on the wintertime East Asian weather. J. Geophys. Res., 116, D03109, doi:10.1029/2010JD014787.

    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., P. J. Webster, and V. E. Toma, 2013: Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys. Res. Lett., 40, 33373341, doi:10.1002/grl.50632.

    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., C. H. Ho, B. M. Kim, and W. T. Kwon, 2005: Influence of the Madden-Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, doi:10.1029/2004JD005408.

    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., B. M. Kim, C. H. Ho, D. Chen, and G. H. Lim, 2006: Stratospheric origin of cold surge occurrence in East Asia. Geophys. Res. Lett., 33, L14710, doi:10.1029/2006GL026607.

    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., B. M. Kim, C. H. Ho, and Y. H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO‐induced extratropical vertical motion. J. Climate, 21, 788801, doi:10.1175/2007JCLI1801.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X., L. Chen, F. Ren, and C. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521533, doi:10.1007/s00376-010-9118-z.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., C. P. Chang, and P. H. Chan, 1983: Short-term planetary-scale interactions over the tropics and midlatitudes. Part II: Winter-MONEX periods. Mon. Wea. Rev., 111, 13721388, doi:10.1175/1520-0493(1983)111<1372:STPSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 33333350, doi:10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, doi:10.1175/2010MWR3363.1.

    • Search Google Scholar
    • Export Citation
  • Liu, D., and X. Yang, 2010: Mechanism responsible for the impact of Madden-Julian oscillation on the wintertime rainfall over eastern China. Sci. Meteor. Sin., 30, 684693.

    • Search Google Scholar
    • Export Citation
  • Liu, P., 2014: MJO structure associated with the higher-order CEOF modes. Climate Dyn., 43, 19391950, doi:10.1007/s00382-013-2017-0.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, doi:10.1007/s00382-013-1817-6.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037, doi:10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, doi:10.1175/JAS3629.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., C. Jones, J. K. Schemm, and N. E. Graham, 1999: A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J. Climate, 12, 19181939, doi:10.1175/1520-0442(1999)012<1918:ASERTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and Coauthors, 2008: Analysis of the severe cold surge, ice-snow and frozen disasters in south China during January 2008: I. Climatic features and its impacts (in Chinese). Meteor. Mon., 95100.

    • Search Google Scholar
    • Export Citation
  • Wang, L., K. Kodera, and W. Chen, 2012: Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Quart. J. Roy. Meteor. Soc., 138, 17401750, doi:10.1002/qj.1905.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and Coauthors, 2011: The great 2008 Chinese ice storm: Its socioeconomic–ecological impact and sustainability lessons learned. Bull. Amer. Meteor. Soc., 92, 4760, doi:10.1175/2010BAMS2857.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1603 899 295
PDF Downloads 698 97 21