• Anderson, J. L., and et al. , 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G. A., , L. Cao, , G. Bala, , and K. Caldeira, 2012: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 38, 897911, doi:10.1007/s00382-011-1052-y.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., , D. G. Streets, , K. F. Yarber, , S. M. Nelson, , J. Woo, , and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and et al. , 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, doi:10.1002/jgrd.50171.

    • Search Google Scholar
    • Export Citation
  • Cook, J., , and E. J. Highwood, 2004: Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 175191, doi:10.1256/qj.03.64.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , H. L. Jiang, , and J. Y. Harrington, 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32, L02804, doi:10.1029/2004GL021369.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and et al. , 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Haywood, J. M., , V. Ramaswamy, , and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283, 12991303, doi:10.1126/science.283.5406.1299.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., , and S. Dobbie, 2008: The impact of aerosols on non-precipitating marine stratocumulus. II: The semi-direct effect. Quart. J. Roy. Meteor. Soc., 134, 11551165, doi:10.1002/qj.277.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., , K. P. Shine, , and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 14071422, doi:10.1256/qj.03.61.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , and J. Lu, 2012: Expansion of the Hadley cell under global warming: Winter versus summer. J. Climate, 25, 83878393, doi:10.1175/JCLI-D-12-00323.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , I. M. Held, , D. M. W. Frierson, , and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , D. M. W. Frierson, , and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Koch, D., , and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys. Discuss., 10, 76857696, doi:10.5194/acp-10-7685-2010.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., , V. Ramaswamy, , P. A. Ginoux, , and L. H. Horowitz, 2005: Direct radiative forcing of anthropogenic organic aerosol. J. Geophys. Res., 110, D20208, doi:10.1029/2004JD005573.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., , V. Ramaswamy, , and G. Persad, 2010: Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37, L13701, doi:10.1029/2010GL042895.

    • Search Google Scholar
    • Export Citation
  • Persad, G. G., , Y. Ming, , and V. Ramaswamy, 2012: Tropical tropospheric-only responses to absorbing aerosols. J. Climate, 25, 24712480, doi:10.1175/JCLI-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, doi:10.1038/ngeo156.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , P. J. Crutzen, , J. T. Kiehl, , and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, doi:10.1126/science.1064034.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , M. Ramana, , G. Roberts, , D. Kim, , C. Corrigan, , C. Chung, , and D. Winker, 2007: Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575578, doi:10.1038/nature06019.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., , R. Wood, , and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, doi:10.1029/2010JD015540.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , J. Nilsson, , and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503655, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, doi:10.1126/science.1237554.

  • UNEP/WMO, 2011: Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers. United Nations Environment Programme, 282 pp.

  • Wang, C., 2013: Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses. Atmos. Res., 122, 237249, doi:10.1016/j.atmosres.2012.11.005.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., , B. Lu, , and B. Q. Xiang, 2013: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci., 6, 828832, doi:10.1038/ngeo1931.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., , and T. C. Bond, 2010: How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophys. Res. Lett., 37, L20807, doi:10.1029/2010GL044555.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, doi:10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 11
PDF Downloads 28 29 8

Sensitivity of the Climate Response to the Altitude of Black Carbon in the Northern Subtropics in an Aquaplanet GCM

View More View Less
  • 1 School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
  • | 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 3 International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

This study explores the dependence of the climate response on the altitude of black carbon in the northern subtropics by employing an atmospheric general circulation model coupled to an aquaplanet mixed layer ocean, with a focus on the pattern changes in the temperature, hydrological cycle, and large-scale circulation. Black carbon added below or within the subtropical low-level clouds tends to suppress convection, which reduces the low cloud amount, resulting in a positive cloud radiative forcing. The warmer northern subtropics then induce a northward shift of the intertropical convergence zone (ITCZ) and a poleward expansion of the descending branch of the northern Hadley cell. As the black carbon–induced local warming is amplified by clouds and is advected by the anomalous Hadley circulation, the entire globe gets warmer. In contrast, black carbon added near the surface increases the buoyancy of air parcels to enhance convection, leading to an increase in the subtropical low cloud amount and a negative cloud radiative forcing. The temperature increase remains local to where black carbon is added and elsewhere decreases, so that the ITCZ is shifted southward and the descending branch of the northern Hadley cell contracts equatorward. Consistent with previous studies, the authors demonstrate that the climate response to black carbon is highly sensitive to the vertical distribution of black carbon relative to clouds; hence, models have to accurately compute the vertical transport of black carbon to enhance their skill in simulating the climatic effects of black carbon.

Corresponding author address: Sarah M. Kang, School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 689-798, South Korea. E-mail: skang@unist.ac.kr

Abstract

This study explores the dependence of the climate response on the altitude of black carbon in the northern subtropics by employing an atmospheric general circulation model coupled to an aquaplanet mixed layer ocean, with a focus on the pattern changes in the temperature, hydrological cycle, and large-scale circulation. Black carbon added below or within the subtropical low-level clouds tends to suppress convection, which reduces the low cloud amount, resulting in a positive cloud radiative forcing. The warmer northern subtropics then induce a northward shift of the intertropical convergence zone (ITCZ) and a poleward expansion of the descending branch of the northern Hadley cell. As the black carbon–induced local warming is amplified by clouds and is advected by the anomalous Hadley circulation, the entire globe gets warmer. In contrast, black carbon added near the surface increases the buoyancy of air parcels to enhance convection, leading to an increase in the subtropical low cloud amount and a negative cloud radiative forcing. The temperature increase remains local to where black carbon is added and elsewhere decreases, so that the ITCZ is shifted southward and the descending branch of the northern Hadley cell contracts equatorward. Consistent with previous studies, the authors demonstrate that the climate response to black carbon is highly sensitive to the vertical distribution of black carbon relative to clouds; hence, models have to accurately compute the vertical transport of black carbon to enhance their skill in simulating the climatic effects of black carbon.

Corresponding author address: Sarah M. Kang, School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 689-798, South Korea. E-mail: skang@unist.ac.kr
Save