• Chiang, J. C. H., , and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and et al. , 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter14_FINAL.pdf.]

  • Clement, A. C., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590, doi:10.1175/2007JCLI1975.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. C. Clement, , G. A. Vecchi, , B. J. Soden, , B. P. Kirtman, , and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, doi:10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., , M. Biasutti, , and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, doi:10.1175/JCLI-D-11-00741.1.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., , M. Biasutti, , and A. H. Sobel, 2014: The effect of greenhouse gas–induced changes in SST on the annual cycle of zonal mean tropical precipitation. J. Climate, 27, 45444565, doi:10.1175/JCLI-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., , Y.-T. Hwang, , J. C. H. Chiang, , and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, doi:10.1175/JCLI-D-12-00525.1.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Huang, P., 2014: Regional response of annual-mean tropical rainfall to global warming. Atmos. Sci. Lett., 15, 103109, doi:10.1002/asl2.475.

    • Search Google Scholar
    • Export Citation
  • Huang, P., , and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, doi:10.1175/JCLI-D-14-00833.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., , S.-P. Xie, , K. Hu, , G. Huang, , and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Jia, F., , and L. Wu, 2013: A study of response of the equatorial Pacific SST to doubled-CO2 forcing in the coupled CAM–1.5-layer reduced-gravity ocean model. J. Phys. Oceanogr., 43, 12881300, doi:10.1175/JPO-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi‐model ensembles. Geophys. Res. Lett., 39, L22703, doi:10.1029/2012GL053777.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. Vavrus, , F. He, , N. Wen, , and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Long, S.-M., , S.-P. Xie, , X.-T. Zheng, , and Q. Liu, 2014: Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. J. Climate, 27, 285299, doi:10.1175/JCLI-D-13-00297.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., , and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, doi:10.1175/JCLI-D-12-00283.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , K. Bryan, , and M. J. Spelman, 1990: Transient response of a global ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J. Phys. Oceanogr., 20, 722749, doi:10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616, doi:10.1175/JCLI3746.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10.pdf.]

  • Philander, S., , D. Gu, , G. Lambert, , T. Li, , D. Halpern, , N. Lau, , and R. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521534, doi:10.1175/1520-0442(1997)010<0521:ODTAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., , D. M. W. Frierson, , and J. H. Son, 2014: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett., 41, 52515258, doi:10.1002/2014GL060868.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and S. J. Camargo, 2011: Projected future seasonal changes in tropical summer climate. J. Climate, 24, 473487, doi:10.1175/2010JCLI3748.1.

    • Search Google Scholar
    • Export Citation
  • Tan, P.-H., , C. Chou, , and J.-Y. Tu, 2008: Mechanisms of global warming impacts on robustness of tropical precipitation asymmetry. J. Climate, 21, 55855602, doi:10.1175/2008JCLI2154.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , F.-F. Jin, , and M. Collins, 2004: Intensification of the annual cycle in the tropical Pacific due to greenhouse warming. Geophys. Res. Lett., 31, L12208, doi:10.1029/2004GL019442.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007b: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 8
PDF Downloads 34 34 2

Seasonal Changes in Tropical SST and the Surface Energy Budget under Global Warming Projected by CMIP5 Models

View More View Less
  • 1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China
© Get Permissions
Restricted access

Abstract

The seasonal changes in tropical SST under global warming are investigated based on the representative concentration pathway 8.5 (RCP8.5) and historical runs in 31 models from phase 5 of CMIP (CMIP5). The tropical SST changes show three pronounced seasonal patterns: the peak locking to the equator throughout the year and the weaker equatorial changes and stronger hemispheric asymmetric changes (HACs) in boreal autumn. The magnitude of the seasonal patterns is comparable to the tropical-mean warming and the annual-mean patterns, implying great impacts on global climate changes. The peak locking to the equator is a result of the equatorial locking of the minimum damping of climatological latent heat flux and the ocean heat transport changes. Excluding the role of ocean heat transport suggested in previous studies, the weaker equatorial warming in boreal autumn is contributed by stronger evaporation damping as a result of stronger climatological evaporation and increased surface wind speed. The seasonal variations of the HAC are driven by the variations of the damping effect of climatological evaporation. In boreal summer, the damping effect of climatological evaporation, which is greater in the Southern Hemisphere, promotes the development of the HAC. Consequently, the HAC peaks in boreal autumn when the damping effect of climatological evaporation transforms to a reverse meridional pattern, which is greater in the Northern Hemisphere. The wind–evaporation–SST feedback, as the key process of the annual-mean HAC, amplifies the seasonal variations of the HAC in tropical SST.

Corresponding author address: Dr. Ping Huang, Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei-Er-Tiao 6, Zhong-Guan-Cun, Beijing 100190, China. E-mail: huangping@mail.iap.ac.cn

Abstract

The seasonal changes in tropical SST under global warming are investigated based on the representative concentration pathway 8.5 (RCP8.5) and historical runs in 31 models from phase 5 of CMIP (CMIP5). The tropical SST changes show three pronounced seasonal patterns: the peak locking to the equator throughout the year and the weaker equatorial changes and stronger hemispheric asymmetric changes (HACs) in boreal autumn. The magnitude of the seasonal patterns is comparable to the tropical-mean warming and the annual-mean patterns, implying great impacts on global climate changes. The peak locking to the equator is a result of the equatorial locking of the minimum damping of climatological latent heat flux and the ocean heat transport changes. Excluding the role of ocean heat transport suggested in previous studies, the weaker equatorial warming in boreal autumn is contributed by stronger evaporation damping as a result of stronger climatological evaporation and increased surface wind speed. The seasonal variations of the HAC are driven by the variations of the damping effect of climatological evaporation. In boreal summer, the damping effect of climatological evaporation, which is greater in the Southern Hemisphere, promotes the development of the HAC. Consequently, the HAC peaks in boreal autumn when the damping effect of climatological evaporation transforms to a reverse meridional pattern, which is greater in the Northern Hemisphere. The wind–evaporation–SST feedback, as the key process of the annual-mean HAC, amplifies the seasonal variations of the HAC in tropical SST.

Corresponding author address: Dr. Ping Huang, Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei-Er-Tiao 6, Zhong-Guan-Cun, Beijing 100190, China. E-mail: huangping@mail.iap.ac.cn
Save