• Albrecht, R. I., , S. J. Goodman, , W. A. Petersen, , D. E. Buechler, , E. C. Bruning, , R. J. Blakeslee, , and H. J. Christian, 2011: The 13 years of TRMM Lightning Imaging Sensor: From individual flash characteristics to decadal tendencies. Proc. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, International Commission of Atmospheric Electricity, M11-0203. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015779.pdf.]

  • Boccippio, D. J., , S. J. Goodman, , and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, doi:10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bürgesser, R. E., , M. G. Nicora, , and E. E. Ávila, 2012: Characterization of the lightning activity of “Relámpago del Catatumbo.” J. Atmos. Sol.-Terr. Phys., 77, 241247, doi:10.1016/j.jastp.2012.01.013.

    • Search Google Scholar
    • Export Citation
  • Bürgesser, R. E., , M. G. Nicora, , and E. E. Ávila, 2013: Spatial and time distribution of the flash rate over tropical Africa. J. Atmos. Sol.-Terr. Phys., 94, 4148, doi:10.1016/j.jastp.2012.12.025.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , S. J. Goodman, , D. J. Boccippio, , E. J. Zipser, , and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , D. E. Buechler, , and R. J. Blakeslee, 2014a: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , D. E. Buechler, , and R. J. Blakeslee, 2014b: LIS/OTD gridded lightning climatology data collection, version 2.3.2014. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 30 June 2015, doi:10.5067/LIS/LIS-OTD/DATA311.

  • Christian, H. J., and et al. , 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Diaz, L., , M. Martinez, , J. Ramírez, , and J. Rodriguez, 2009: Actualización de la actividad de rayos en Venezuela, empleando la información del proyecto satelital de la NASA. Congreso Venezolano de Redes y Energía Eléctrica, Porlamar, Venezuela, Comité Nacional Venezolano de CIGRÉ, B2-223.

  • Kuleshov, Y., , G. De Hoedt, , W. Wright, , and A. Brewster, 2002: Thunderstorm distribution and frequency in Australia. Aust. Meteor. Mag., 51, 145154.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , D. J. Cecil, , S. W. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., , T. L. Bell, , and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, doi:10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E., , K. Rothkin, , D. Stevenson, , and D. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteor., 39, 22232230, doi:10.1175/1520-0450(2001)040<2223:GLVCBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 1956: World Distribution of Thunderstorm Days. Part 2: Tables of Marine Data and World Maps. WMO, 77 pp.

  • Zipser, E. J., , C. Liu, , D. J. Cecil, , S. W. Nesbitt, , and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 149 25
PDF Downloads 164 164 19

TRMM LIS Climatology of Thunderstorm Occurrence and Conditional Lightning Flash Rates

View More View Less
  • 1 NASA Marshall Space Flight Center, Huntsville, Alabama
  • | 2 University of Alabama in Huntsville, Huntsville, Alabama
  • | 3 NASA Marshall Space Flight Center, Huntsville, Alabama
© Get Permissions
Restricted access

Abstract

The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite has previously been used to build climatologies of mean lightning flash rate across the global tropics and subtropics. This new work explores climatologies of thunderstorm occurrence as seen by LIS and the conditional mean flash rates when thunderstorms do occur. The region where thunderstorms are seen most often by LIS extends slightly farther east in central Africa than the corresponding region with the highest total mean annual flash rates. Presumably this reflects a difference between more frequent thunderstorm initiation in the east and upscale growth as storms move westward. There are some differences between locations with the greatest total lightning flash counts and those where thunderstorms occur most often. The greatest conditional mean flash rates—considering only those TRMM orbits that do have lightning in a given grid box—are found in subtropical regions. The highest values are in Argentina, with the central United States, Pakistan, eastern China, and the east coast of Australia also having particularly high values.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0124.s1.

Corresponding author address: Daniel J. Cecil, NASA MSFC Earth Science Office, 320 Sparkman Dr. NW, Huntsville, AL 35805. E-mail: danieljcecil@nasa.gov

Abstract

The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite has previously been used to build climatologies of mean lightning flash rate across the global tropics and subtropics. This new work explores climatologies of thunderstorm occurrence as seen by LIS and the conditional mean flash rates when thunderstorms do occur. The region where thunderstorms are seen most often by LIS extends slightly farther east in central Africa than the corresponding region with the highest total mean annual flash rates. Presumably this reflects a difference between more frequent thunderstorm initiation in the east and upscale growth as storms move westward. There are some differences between locations with the greatest total lightning flash counts and those where thunderstorms occur most often. The greatest conditional mean flash rates—considering only those TRMM orbits that do have lightning in a given grid box—are found in subtropical regions. The highest values are in Argentina, with the central United States, Pakistan, eastern China, and the east coast of Australia also having particularly high values.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0124.s1.

Corresponding author address: Daniel J. Cecil, NASA MSFC Earth Science Office, 320 Sparkman Dr. NW, Huntsville, AL 35805. E-mail: danieljcecil@nasa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 16.89 MB)
Save