• Aagaard, K., , and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94 (C10), 14 48514 498, doi:10.1029/JC094iC10p14485.

    • Search Google Scholar
    • Export Citation
  • Adler, R., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., 2012: The role of water vapour in Earth’s energy flows. Surv. Geophys., 33, 557564, doi:10.1007/s10712-011-9157-8.

  • Allan, R. P., , C. L. Liu, , M. Zahn, , D. A. Lavers, , E. Koukouvagias, , and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552, doi:10.1007/s10712-012-9213-z.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., , and E. Reichel, 1975: The World Water Balance. Elsevier, 179 pp.

  • Boyer, T. P., , S. Levitus, , J. I. Antonov, , R. A. Locarnini, , and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., , T. H. Peng, , J. Jouzel, , and G. Russell, 1990: The magnitude of global fresh-water transports of importance to ocean circulation. Climate Dyn., 4, 7379, doi:10.1007/BF00208902.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., , A. F. Moise, , and R. A. Colman, 2013: The South Pacific convergence zone in CMIP5 simulations of historical and future climate. Climate Dyn., 41, 21792197, doi:10.1007/s00382-012-1591-x.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , J. D. Neelin, , C.-A. Chen, , and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Coachman, L. K., , and K. Aagaard, 1988: Transports through Bering Strait—Annual and interannual variability. J. Geophys. Res., 93 (C12), 15 53515 539, doi:10.1029/JC093iC12p15535.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., , D. A. Salstein, , and R. D. Rosen, 2000: Interannual variability in the meridional transport of water vapor. J. Hydrometeor., 1, 547553, doi:10.1175/1525-7541(2000)001<0547:IVITMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , B. B. B. Booth, , B. Bhaskaran, , G. R. Harris, , J. M. Murphy, , D. M. H. Sexton, , and M. J. Webb, 2011: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multi-model ensembles. Climate Dyn., 36, 17371766, doi:10.1007/s00382-010-0808-0.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and K. E. Trenberth, 2003: New estimates of continental discharge and oceanic freshwater transport. Seventh Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Wellington, New Zealand, Amer. Meteor. Soc., 12.3. [Available online at https://ams.confex.com/ams/7ICSHMO/techprogram/paper_59417.htm.]

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Demory, M. E., , P. L. Vidale, , M. J. Roberts, , P. Berrisford, , J. Strachan, , R. Schiemann, , and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, doi:10.1007/s00382-013-1924-4.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , G. A. Vecchi, , and A. C. Clement, 2013: Detectability of changes in the Walker circulation in response to global warming. J. Climate, 26, 40384048, doi:10.1175/JCLI-D-12-00531.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2009: The ocean’s role in continental climate variability and change. J. Climate, 22, 49394952, doi:10.1175/2009JCLI2778.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, doi:10.5670/oceanog.2015.03.

  • Durack, P. J., , and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , S. E. Wijffels, , and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , S. E. Wijffels, , and P. J. Gleckler, 2014: Long-term sea-level change revisited: The role of salinity. Environ. Res. Lett., 9, 114017, doi:10.1088/1748-9326/9/11/114017.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, doi:10.1017/CBO9781107415324.020.

  • Forster, P. M., , T. Andrews, , P. Good, , J. M. Gregory, , L. S. Jackson, , and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., , R. D. Rosen, , D. A. Salstein, , and J. S. Boyle, 1997: Evaluation of tropospheric water vapor simulations from the Atmospheric Model Intercomparison Project. J. Climate, 10, 16481661, doi:10.1175/1520-0442(1997)010<1648:EOTWVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., , A. Drumond, , R. Nieto, , R. M. Trigo, , and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, doi:10.1029/2010GL043712.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., , R. Nieto, , A. Drumond, , A. M. Durán-Quesada, , A. Stohl, , H. Sodemann, , and R. M. Trigo, 2011: A close look at oceanic sources of continental precipitation. Eos, Trans. Amer. Geophys. Union, 92, 193194, doi:10.1029/2011EO230001.

    • Search Google Scholar
    • Export Citation
  • Goldsbrough, G. R., 1933: Ocean currents produced by evaporation and precipitation. Proc. Roy. Soc. London, 141A, 512517, doi:10.1098/rspa.1933.0135.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., 2002: Sensitivity of the global thermohaline circulation to interbasin freshwater transport by the atmosphere and the Bering Strait throughflow. J. Climate, 15, 25162526, doi:10.1175/1520-0442(2002)015<2516:SOTGTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and et al. , 2015: Challenges in quantifying changes in the global water cycle. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00212.1, in press.

  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hu, A. X., , and G. A. Meehl, 2005: Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett., 32, L24610, doi:10.1029/2005GL024424.

    • Search Google Scholar
    • Export Citation
  • Huang, R., 2005: Contribution of oceanic circulation to the poleward heat flux. J. Ocean Univ. China, 4, 277287, doi:10.1007/s11802-005-0048-9.

    • Search Google Scholar
    • Export Citation
  • Huang, R., , and R. W. Schmitt, 1993: The Goldsbrough–Stommel circulation of the world oceans. J. Phys. Oceanogr., 23, 12771284, doi:10.1175/1520-0485(1993)023<1277:TGCOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol.,319, 83–95, doi:10.1016/j.jhydrol.2005.07.003.

  • Hwang, Y. T., , and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., , S. Gulev, , and L. Yu, 2013: Exchanges through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed., G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 115–140, doi:10.1016/B978-0-12-391851-2.00005-2.

  • Knutson, T. R., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laîné, A., , H. Nakamura, , K. Nishii, , and T. Miyasaka, 2014: A diagnostic study of future evaporation changes projected in CMIP5 climate models. Climate Dyn., 42, 27452761, doi:10.1007/s00382-014-2087-7.

    • Search Google Scholar
    • Export Citation
  • Latif, M., 2001: Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys. Res. Lett., 28, 539542, doi:10.1029/2000GL011837.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., , and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, doi:10.1007/s00382-012-1564-0.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., , and M. Previdi, 2012: Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environ. Res. Lett., 7, 014006, doi:10.1088/1748-9326/7/1/014006.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., , and F. Lo, 2013: CMIP5 update of “Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models.” Environ. Res. Lett., 8, 029401, doi:10.1088/1748-9326/8/2/029401.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, G., 2003: Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus, 55A, 438449, doi:10.1034/j.1600-0870.2003.00028.x.

    • Search Google Scholar
    • Export Citation
  • Ma, J., , and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, doi:10.1175/JCLI-D-12-00283.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., , S.-P. Xie, , and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, doi:10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , and P. A. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, doi:10.1038/nclimate1169.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., , R. P. Allan, , M. P. Byrne, , and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., , and A. H. Oort, 1983: The atmospheric branch of the hydrological cycle and climate. Variations in the Global Water Budget, A. Street-Perrott, M. Beran, and R. Ratcliffe, Eds., Springer, 5–65.

  • Pierce, D. W., , P. J. Gleckler, , T. P. Barnett, , B. D. Santer, , and P. J. Durack, 2012: The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett., 39, L21704, doi:10.1029/2012GL053389.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , C. P. Batstone, , R. J. P. Hofmann, , K. E. Taylor, , and P. J. Glecker, 2008: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Richter, I., , and S. P. Xie, 2010: Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming. Climate Dyn., 35, 551566, doi:10.1007/s00382-009-0708-3.

    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., , R. W. Schmitt, , and L. L. Yu, 2010: The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res., 68, 569595, doi:10.1357/002224010794657164.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography,21, 12–19, doi:10.5670/oceanog.2008.63.

  • Schmittner, A., , T. A. M. Silva, , K. Fraedrich, , E. Kirk, , and F. Lunkeit, 2011: Effects of mountains and ice sheets on global ocean circulation. J. Climate, 24, 28142829, doi:10.1175/2010JCLI3982.1.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , E. A. Smith, , F. R. Robertson, , and S. C. Park, 2004: Derived over-ocean water vapor transports from satellite-retrieved EP datasets. J. Climate, 17, 13521365, doi:10.1175/1520-0442(2004)017<1352:DOWVTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and et al. , 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108, 3007, doi:10.1029/2001JC001115.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1980: Asymmetry of interoceanic fresh-water and heat fluxes. Proc. Natl. Acad. Sci. USA, 77, 23772381, doi:10.1073/pnas.77.5.2377.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , R. T. Sutton, , and D. M. Smith, 2008: Detection and attribution of Atlantic salinity changes. Geophys. Res. Lett., 35, L21702, doi:10.1029/2008GL035874.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303, doi:10.1016/j.pocean.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Terray, L., , L. Corre, , S. Cravatte, , T. Delcroix, , G. Reverdin, , and A. Ribes, 2012: Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Climate, 25, 958977, doi:10.1175/JCLI-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , E. J. Fetzer, , B. H. Kahn, , J. Teixeira, , E. Manning, , and T. Hearty, 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114134, doi:10.1029/2012JD018607.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S.-P. Xie, , C. Deser, , Y. Kosaka, , and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature,491, 439–443, doi:10.1038/nature11576.

  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , L. Smith, , T. T. Qian, , A. Dai, , and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., , and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, doi:10.1038/nclimate1495.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., , and H. H. G. Savenije, 2013: Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resour. Res., 49, 39934004, doi:10.1002/wrcr.20296.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , L. Zhang, , and S.-K. Lee, 2013: Response of freshwater flux and sea surface salinity to variability of the Atlantic warm pool. J. Climate, 26, 12491267, doi:10.1175/JCLI-D-12-00284.1.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., , R. W. Schmitt, , H. L. Bryden, , and A. Stigebrandt, 1992: Transport of fresh-water by the oceans. J. Phys. Oceanogr., 22, 155162, doi:10.1175/1520-0485(1992)022<0155:TOFBTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, H., , S.-P. Xie, , Y. Wang, , and R. J. Small, 2005: Effects of Central American mountains on the eastern Pacific winter ITCZ and moisture transport. J. Climate, 18, 38563873, doi:10.1175/JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., , and W. S. Broecker, 1992: The influence of atmospheric moisture transport on the fresh-water balance of the Atlantic drainage-basin: General-circulation model simulations and observations. J. Geophys. Res., 97, 27652773, doi:10.1029/91JD01699.

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., , T. F. Stocker, , and W. S. Broecker, 1994: Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. J. Geophys. Res., 99 (C6), 12 44312 457, doi:10.1029/94JC00526.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., , X. Zhang, , and S. Wang, 2000: The interbasin transport of atmospheric moisture evaluated from NCEP/NCAR reanalysis data. Acta Meteor. Sin., 14, 159172.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 26
PDF Downloads 201 201 26

Centennial Changes of the Global Water Cycle in CMIP5 Models

View More View Less
  • 1 Massachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program in Oceanography, Woods Hole, Massachusetts
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.

Corresponding author address: Samuel J. Levang, Dept. of Earth, Atmospheric, and Planetary Sciences, 54-1611, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139. E-mail: slevang@mit.edu

Abstract

The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.

Corresponding author address: Samuel J. Levang, Dept. of Earth, Atmospheric, and Planetary Sciences, 54-1611, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139. E-mail: slevang@mit.edu
Save