• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, doi:10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2004: Diagnostic case studies of the northern annular mode. J. Climate, 17, 39904004, doi:10.1175/1520-0442(2004)017<3990:DCSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , B. A. McDaniel, , and W. Robinson, 2006: Stratosphere–troposphere coupling during spring onset. J. Climate, 19,48914901, doi:10.1175/JCLI3907.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. J. Seidel, , S. C. Hardiman, , N. Butchart, , T. Birner, , and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00173.1, in press.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett.,34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , and J. Jones, 2011: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 65626572, doi:10.1175/2011JCLI4160.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I., , L. Sun, , and G. Chen, 2013: The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett., 40, 49334937, doi:10.1002/grl.50943.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., , and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 13741390, doi:10.1002/2014JD022116.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009 (updated monthly): ECMWF public datasets: Era-Interim. Accessed 12 Dec 2012. [Available online at http://www.ecmwf.int/en/research/climate-reanalysis/era-interim.]

  • Edmon, H. J., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 19–59.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , C. Orbe, , and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L24801, doi:10.1029/2009GL040913.

    • Search Google Scholar
    • Export Citation
  • Harada, Y., , A. Goto, , H. Hasegawa, , N. Fujikawa, , H. Naoe, , and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, doi:10.1175/2009JAS3320.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. W. J. Thompson, , and D. L. Hartman, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., , and S.-W. Son, 2010: Quality of reanalysis data during stratospheric vortex weakening and intensification events. Geophys. Res. Lett., 37, L22801, doi:10.1029/2010GL045237.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., , and S.-W. Son, 2013: Planetary-scale wave activity as a source of varying tropospheric response to stratospheric sudden warming events: A case study. J. Geophys. Res. Atmos.,118, 10 99411 006, doi:10.1002/jgrd.50871.

    • Search Google Scholar
    • Export Citation
  • Martius, O., , L. M. Polvani, , and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDaniel, B., , and R. X. Black, 2005: Intraseasonal dynamical evolution of the northern annular mode. J. Climate, 18, 38203839, doi:10.1175/JCLI3467.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., , L. J. Gray, , J. Anstey, , M. P. Baldwin, , and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, K. I., , and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, doi:10.1029/2005GL024784.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and D. Zhu, 2010: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci., 67, 27012716, doi:10.1175/2010JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis. J. Atmos. Sci., 68, 27832799, doi:10.1175/2011JAS3685.1.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, doi:10.1175/JCLI-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., , and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, doi:10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R., 1992: A study of eddy-induced fluctuations of the zonal-mean wind using conventional and transformed Eulerian diagnostics. J. Atmos. Sci., 49, 10361050, doi:10.1175/1520-0469(1992)049<1036:ASOEIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, doi:10.1175/2011JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , and J. Perlwitz, 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere. J. Climate, 26, 17451763, doi:10.1175/JCLI-D-12-00251.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , and J. Perlwitz, 2014: On the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave coupling. J. Atmos. Sci., 71, 195206, doi:10.1175/JAS-D-13-0138.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , M. Blackburn, , and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, doi:10.1175/2008JAS2758.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere–troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , C. G. Fletcher, , and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050, doi:10.1175/2010JCLI3606.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., 2014: Wave activity events and the variability of the stratospheric polar vortex. J. Climate, 27, 77967806, doi:10.1175/JCLI-D-13-00756.1.

    • Search Google Scholar
    • Export Citation
  • Song, Y., , and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. C. Furtado, , and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63, 26162629, doi:10.1175/JAS3771.1.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. H., , A. J. Charlton, , and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64, 479496, doi:10.1175/JAS3828.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., , A. J. Miller, , J. Wang, , and J. K. Angell, 2002: Downward-propagating temperature anomalies in the preconditioned polar stratosphere. J. Climate, 15, 781792, doi:10.1175/1520-0442(2002)015<0781:DPTAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 10
PDF Downloads 47 47 10

Onset of Circulation Anomalies during Stratospheric Vortex Weakening Events: The Role of Planetary-Scale Waves

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 2 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

To highlight the details of stratosphere–troposphere dynamical coupling during the onset of strong polar vortex variability, this study identifies stratospheric vortex weakening (SVW) events by rapid deceleration of the polar vortex and performs composite budget analyses in the transformed Eulerian-mean (TEM) framework on daily time scales. Consistent with previous work, a rapid deceleration of the polar vortex, followed by a rather slow recovery, is largely explained by conservative dynamics with nonnegligible contribution by nonconservative sinks of wave activity. During the onset of such events, stratospheric zonal wind anomalies show a near-instantaneous vertical coupling to the troposphere, which results from an anomalous upward and poleward propagation of planetary-scale waves. In the troposphere, zonal wind anomalies are also influenced by synoptic-scale waves, confirming previous studies.

The SVW events driven by wavenumber-1 disturbances show comparable circulation anomalies to those driven by wavenumber-2 disturbances both in the stratosphere and troposphere. The former, however, exhibits more persistent anomalies after the onset than the latter. During both events, tropospheric wavenumber-1 and 2 disturbances project strongly onto the climatological waves, indicating that vertical propagation of planetary-scale waves into the stratosphere is largely caused by constructive linear interference. It is also found that the SVW-related vertical coupling is somewhat sensitive to the stratospheric mean state. Although overall evolution of zonal-mean circulation anomalies are reasonably similar under an initially weak or strong polar vortex, the time-lagged downward coupling is evident only when the polar vortex is decelerated under a weak vortex state. These results are compared with other definitions of weak polar vortex events, such as stratospheric sudden warming events.

Corresponding author address: Patrick Martineau, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada. E-mail: pmartineau@meteo.mcgill.ca

Abstract

To highlight the details of stratosphere–troposphere dynamical coupling during the onset of strong polar vortex variability, this study identifies stratospheric vortex weakening (SVW) events by rapid deceleration of the polar vortex and performs composite budget analyses in the transformed Eulerian-mean (TEM) framework on daily time scales. Consistent with previous work, a rapid deceleration of the polar vortex, followed by a rather slow recovery, is largely explained by conservative dynamics with nonnegligible contribution by nonconservative sinks of wave activity. During the onset of such events, stratospheric zonal wind anomalies show a near-instantaneous vertical coupling to the troposphere, which results from an anomalous upward and poleward propagation of planetary-scale waves. In the troposphere, zonal wind anomalies are also influenced by synoptic-scale waves, confirming previous studies.

The SVW events driven by wavenumber-1 disturbances show comparable circulation anomalies to those driven by wavenumber-2 disturbances both in the stratosphere and troposphere. The former, however, exhibits more persistent anomalies after the onset than the latter. During both events, tropospheric wavenumber-1 and 2 disturbances project strongly onto the climatological waves, indicating that vertical propagation of planetary-scale waves into the stratosphere is largely caused by constructive linear interference. It is also found that the SVW-related vertical coupling is somewhat sensitive to the stratospheric mean state. Although overall evolution of zonal-mean circulation anomalies are reasonably similar under an initially weak or strong polar vortex, the time-lagged downward coupling is evident only when the polar vortex is decelerated under a weak vortex state. These results are compared with other definitions of weak polar vortex events, such as stratospheric sudden warming events.

Corresponding author address: Patrick Martineau, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada. E-mail: pmartineau@meteo.mcgill.ca
Save