• Allan, R. P., , and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Bedka, S., , R. Knuteson, , H. Revercomb, , D. Tobin, , and D. Turner, 2010: An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground-truth sites: September 2002 through August 2008. J. Geophys. Res., 115, D17310, doi:10.1029/2009JD013139.

    • Search Google Scholar
    • Export Citation
  • Bevis, M. S., , S. Businger, , S. Chiswell, , T. A. Herring, , R. A. Anthes, , C. Rocken, , and R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delays on precipitable water. J. Appl. Meteor., 33, 379386, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626, doi:10.1016/j.gloplacha.2006.11.030.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, doi:10.1146/annurev.fl.23.010191.001143.

  • Fetzer, E. J., , B. H. Lambrigtsen, , A. Eldering, , H. H. Aumann, , and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, doi:10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , V. Venugopal, , D. Sengupta, , M. S. Madhusoodanan, , and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445, doi:10.1126/science.1132027.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and et al. , 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Kawazoe, S., , and W. J. Gutowski Jr., 2013: Regional, very heavy daily precipitation in CMIP5 simulations. J. Hydrometeor., 14, 12281242, doi:10.1175/JHM-D-12-0112.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V., , F. Zwiers, , X. Zhang, , and G. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., , R. P. Allan, , E. F. Wood, , G. Villarini, , D. J. Brayshaw, , and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., , R. P. Allan, , G. Villarini, , B. Lloyd-Hughes, , D. Vrayshaw, , and A. Wade, 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, doi:10.1088/1748-9326/8/3/034010.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., , and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., , C. E. Holloway, , and J. D. Neelin, 2011: Column water vapor statistics and their relationship to deep convection, vertical and horizontal circulation, and moisture structure at Nauru. J. Climate, 24, 54545466, doi:10.1175/JCLI-D-10-05015.1.

    • Search Google Scholar
    • Export Citation
  • Liu, K., , and J. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon. Wea. Rev., 131, 16501662, doi:10.1175//2554.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., , E. Kjellström, , U. Hansson, , G. Strandberg, , and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus,63A, 41–55, doi:10.1111/j.1600-0870.2010.00466.x.

  • O’Gorman, P., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, doi:10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P., , and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., , J. Bhate, , and A. K. Jaswal, 2008: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, doi:10.1029/2008GL035143.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and et al. , 2003: The ARM program’s water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84, 217236, doi:10.1175/BAMS-84-2-217.

    • Search Google Scholar
    • Export Citation
  • Roman, J. A., , R. O. Knuteson, , S. A. Ackerman, , D. C. Tobin, , and H. E. Revercomb, 2012: Assessment of regional global climate model water vapor bias and trends using precipitable water vapor (PWV) observations from a network of Global Positioning Satellite (GPS) receivers in the U.S. Great Plains and Midwest. J. Climate, 25, 54715493, doi:10.1175/JCLI-D-11-00570.1.

    • Search Google Scholar
    • Export Citation
  • Roman, J. A., , R. O. Knuteson, , and S. A. Ackerman, 2014: Time-to-detect trends in precipitable water vapor with varying measurement error. J. Climate, 27, 82598275, doi:10.1175/JCLI-D-13-00736.1.

    • Search Google Scholar
    • Export Citation
  • Schröder, M., , M. Jonas, , R. Lindau, , J. Schulz, , and K. Fennig, 2013: The CM SAF SSM/I-based total column water vapour climate data record: Methods and evaluation against re-analyses and satellite. Atmos. Meas. Tech., 6, 765775, doi:10.5194/amt-6-765-2013.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , D. Bi, , and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, doi:10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B., , and I. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Stanfield, R. E., , X. Dong, , B. Xi, , A. Kennedy, , A. D. Del Genio, , P. Minis, , and J. H. Jiang, 2014: Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budget using satellite observations. Part I: Cloud fraction and properties. J. Climate, 27, 41894208, doi:10.1175/JCLI-D-13-00558.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , D. A. Randall, , I. L. Wittmeyer, , D. A. Dazlich, , and S. Tjemkes, 1993: The Earth’s radiation budget and its relation to atmospheric hydrology: 3. Comparison of observations over oceans with a GCM. J. Geophys. Res., 98 (D3), 4931–4950, doi:10.1029/92JD02520.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., , S. Solomon, , A. Dai, , and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, doi:10.1175/JCLI3672.1.

  • Taylor, K. E., , V. Balaji, , S. Hankin, , M. Juckes, , B. Lawrence, , and S. Pascoe, 2012: CMIP5 Data Reference Syntax (DRS) and controlled vocabularies. 16 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf.]

  • Tian, B., , E. Fetzer, , B. Kahn, , J. Teixeira, , E. Manning, , and T. Hearty, 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114134, doi:10.1029/2012JD018607.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and et al. , 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2005: Uncertainty in hurricanes and global warming. Science, 308, 17531754, doi:10.1126/science.1112551.

  • Trenberth, K. E., , A. Dai, , R. M. Rasmussen, , and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and et al. , 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 997–1017, doi:10.1175/BAMS-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Ware, R. H., and et al. , 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677694, doi:10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whittaker, L., , and L. Horn, 1981: Geographical and seasonal distribution of North American cyclogenesis, 1958–1977. Mon. Wea. Rev., 109, 23122322, doi:10.1175/1520-0493(1981)109<2312:GASDON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., 2001: Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 10051017.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., , and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 5
PDF Downloads 30 30 1

Predicted Changes in the Frequency of Extreme Precipitable Water Vapor Events

View More View Less
  • 1 Department of Atmospheric and Oceanic Science, University of Wisconsin–Madison, and Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin
  • | 2 Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • | 3 Department of Atmospheric and Oceanic Science, University of Wisconsin–Madison, and Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin
  • | 4 Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

A high amount of precipitable water vapor (PWV) is a necessary requirement for heavy precipitation and extreme flooding events. This study determined the predicted shift in extreme PWV from a set of CMIP5 global climate models using the highest emission scenario over three different spatial resolutions (global, zonal, and regional) and four different case regions (India, China, Europe, and eastern United States). For the globe, the frequency of the extreme 1% of PWV events between 2006 and 2030 was predicted to increase by a median factor (herein called an X factor) of 9 by 2075–99. Areas of high PWV, like the tropics, tended toward higher factors. The annual median X factor for India, China, central Europe, and the eastern United States was 24, 17, 15, and 16, respectively. For India, the minimum median X factor was 10 during December–February (DJF) and the maximum was 48 during June–August (JJA). In China, the minimum median X factor (8) occurred during DJF, and the maximum was 42 in JJA. For Europe, DJF and September–November (SON) had the smallest median X factor of 15, whereas JJA had the largest median X factor of 30. The smallest median X factor for the eastern United States (11) occurred during March–May (MAM), whereas the largest median X factor (32) occurred in JJA. Regional X factors were significantly larger than global (1.5–2 times larger), illustrating the importance of regional assessments of extreme PWV. The mean trend in the extreme PWV was approximately linear for all regions with a slope of about 3% decade−1. Observations for 10 (20) years are needed for the extreme PWV to change by an amount that exceeds a 3% (5%) measurement error.

Corresponding author address: Jacola Roman, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: roman2@wisc.edu

Abstract

A high amount of precipitable water vapor (PWV) is a necessary requirement for heavy precipitation and extreme flooding events. This study determined the predicted shift in extreme PWV from a set of CMIP5 global climate models using the highest emission scenario over three different spatial resolutions (global, zonal, and regional) and four different case regions (India, China, Europe, and eastern United States). For the globe, the frequency of the extreme 1% of PWV events between 2006 and 2030 was predicted to increase by a median factor (herein called an X factor) of 9 by 2075–99. Areas of high PWV, like the tropics, tended toward higher factors. The annual median X factor for India, China, central Europe, and the eastern United States was 24, 17, 15, and 16, respectively. For India, the minimum median X factor was 10 during December–February (DJF) and the maximum was 48 during June–August (JJA). In China, the minimum median X factor (8) occurred during DJF, and the maximum was 42 in JJA. For Europe, DJF and September–November (SON) had the smallest median X factor of 15, whereas JJA had the largest median X factor of 30. The smallest median X factor for the eastern United States (11) occurred during March–May (MAM), whereas the largest median X factor (32) occurred in JJA. Regional X factors were significantly larger than global (1.5–2 times larger), illustrating the importance of regional assessments of extreme PWV. The mean trend in the extreme PWV was approximately linear for all regions with a slope of about 3% decade−1. Observations for 10 (20) years are needed for the extreme PWV to change by an amount that exceeds a 3% (5%) measurement error.

Corresponding author address: Jacola Roman, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: roman2@wisc.edu
Save