• Adam, J. C., , I. Haddeland, , F. Su, , and D. P. Lettenmaier, 2007: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob’ rivers. J. Geophys. Res.,112, D24114, doi:10.1029/2007JD008525.

  • Barlow, M. A., 2011: The Madden-Julian oscillation influence on Africa and West Asia. Intraseasonal Variability in the Coupled Tropical Ocean-Atmosphere System, W. Lau and D. Waliser, Eds., Praxis, 477–493.

  • Barlow, M. A., , and M. K. Tippett, 2008: Variability and predictability of central Asia river flows: Antecedent winter precipitation and large-scale teleconnections. J. Hydrometeor., 9, 13341349, doi:10.1175/2008JHM976.1.

    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., , H. Cullen, , and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, doi:10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., , M. Wheeler, , B. Lyon, , and H. Cullen, 2005: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon. Wea. Rev., 133, 35793594, doi:10.1175/MWR3026.1.

    • Search Google Scholar
    • Export Citation
  • Becker, A., , P. Finger, , A. Meyer-Christoffer, , B. Rudolf, , K. Schamm, , U. Schneider, , and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Black, E., 2012: The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. Int. J. Climatol., 32, 16541664, doi:10.1002/joc.2383.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and M. Mak, 1990: On the basic dynamics of regional cyclogenesis. J. Atmos. Sci., 47, 14171442, doi:10.1175/1520-0469(1990)047<1417:OTBDOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cullen, H. M., , and P. B. deMenocal, 2000: North Atlantic influence on Tigris–Euphrates streamflow. Int. J. Climatol., 20, 853863, doi:10.1002/1097-0088(20000630)20:8<853::AID-JOC497>3.0.CO;2-M.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , and C. Funk, 2013: The ENSO-related west Pacific sea surface temperature gradient. J. Climate, 26, 95459562, doi:10.1175/JCLI-D-12-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , M. Barlow, , and R. Saini, 2012: The leading pattern of intraseasonal and interannual Indian Ocean precipitation variability and its relationship with Asian circulation during the boreal cold season. J. Climate, 25, 75097526, doi:10.1175/JCLI-D-11-00572.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , M. Barlow, , and R. Saini, 2013a: Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J. Climate, 26, 88508867, doi:10.1175/JCLI-D-12-00306.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , C. Funk, , and M. Barlow, 2013b: The regional forcing of Northern hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Climate Dyn., 42, 3289–3311, doi:10.1007/s00382-013-1799-4.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , C. Funk, , and M. Barlow, 2014: La Niña diversity and Northwest Indian Ocean Rim teleconnections. Climate Dyn., 43, 2707–2724, doi:10.1007/s00382-014-2083-y.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , C. Funk, , and M. Barlow, 2015: The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J. Climate, 28, 15111526, doi:10.1175/JCLI-D-14-00344.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. International Geophysics Series, Vol. 88, Elsevier, 535 pp.

  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Meteor., 18, 172191, doi:10.1175/1520-0469(1961)018<0172:TSJSOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , D. P. Lettenmaier, , E. F. Wood, , and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , E. F. Wood, , and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2l model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., , E. A. Rosenberg, , C. Lin, , B. Nijssen, , V. Mishra, , K. M. Andreadis, , E. P. Maurer, , and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Mann, M., 2002: Large-scale climate variability and connections with the Middle East in past centuries. Climatic Change, 55, 287314, doi:10.1023/A:1020582910569.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett.,34, L16706, doi:10.1029/2007GL030078.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan,44, 2543.

  • Nazemosadat, M. J., , and H. Ghaedamini, 2010: On the relationships between the Madden–Julian oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis. J. Climate, 23, 887904, doi:10.1175/2009JCLI2141.1.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , D. P. Lettenmaier, , X. Liang, , S. W. Wetzel, , and E. F. Wood, 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724, doi:10.1029/96WR03517.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , R. Schnur, , and D. P. Lettenmaier, 2001: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and et al. , 2014: A prototype global drought information system based on multiple land surface models. J. Hydrometeor., 15, 16611676, doi:10.1175/JHM-D-13-090.1.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Salinger, M., , J. Renwick, , and A. Mullan, 2001: Interdecadal Pacific Oscillation and South Pacific climate. Int. J. Climatol., 21, 17051721, doi:10.1002/joc.691.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., , D. Lthi, , and C. Schr, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, doi:10.1175/2008JCLI2625.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , G. Goteti, , and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., , J. Sheffield, , E. F. Wood, , and D. P. Lettenmaier, 2013: On the sources of global land surface hydrologic predictability. Hydrol. Earth Syst. Sci., 17, 27812796, doi:10.5194/hess-17-2781-2013.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Syed, F. S., , F. Giorgi, , J. S. Pal, , and M. P. King, 2006: Effect of remote forcings on the winter precipitation of central southwest Asia part 1: Observations. Theor. Appl. Climatol., 86, 147160, doi:10.1007/s00704-005-0217-1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and R. M. Dole, 1995: Organization of storm tracks in zonally varying flows. J. Atmos. Sci., 52, 11781191, doi:10.1175/1520-0469(1995)052<1178:OOSTIZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 11
PDF Downloads 31 31 5

The Forcing of Monthly Precipitation Variability over Southwest Asia during the Boreal Cold Season

View More View Less
  • 1 Department of Geography, University of California, Santa Barbara, Santa Barbara, California
  • | 2 Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
  • | 3 Department of Geography, University of California, Santa Barbara, Santa Barbara, California
  • | 4 Earth Resources Observation and Science Center, U.S. Geological Survey, Sioux Falls, South Dakota
© Get Permissions
Restricted access

Abstract

Southwest Asia, defined as the region containing the countries of Afghanistan, Iran, Iraq, and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during the boreal cold season of November–April. The forcing of southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. This study examines the intermonthly differences in precipitation variability over southwest Asia and the atmospheric conditions directly responsible in forcing monthly November–April precipitation.

Seasonally averaged November–April precipitation over southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific decadal variability (PDV), El Niño–Southern Oscillation (ENSO), and the long-term change of global SST (LT). In contrast, the precipitation variability during the individual months of November–April is unrelated and is correlated with SST signatures that include PDV, ENSO, and LT in different combinations.

Despite strong intermonthly differences in precipitation variability during November–April over southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric flow on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean meridional temperature gradient, resulting in temperature advection that is balanced by vertical motions over southwest Asia. The forcing of monthly southwest Asia precipitation by equivalent barotropic Rossby waves is different from the forcing by baroclinic Rossby waves associated with tropically forced–only modes of climate variability.

Current affiliation: Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Andrew Hoell, NOAA/Earth System Research Laboratory Physical Sciences Division, 325 Broadway R/PSD1, Boulder, CO 80304. E-mail: andrew.hoell@noaa.gov

Abstract

Southwest Asia, defined as the region containing the countries of Afghanistan, Iran, Iraq, and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during the boreal cold season of November–April. The forcing of southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. This study examines the intermonthly differences in precipitation variability over southwest Asia and the atmospheric conditions directly responsible in forcing monthly November–April precipitation.

Seasonally averaged November–April precipitation over southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific decadal variability (PDV), El Niño–Southern Oscillation (ENSO), and the long-term change of global SST (LT). In contrast, the precipitation variability during the individual months of November–April is unrelated and is correlated with SST signatures that include PDV, ENSO, and LT in different combinations.

Despite strong intermonthly differences in precipitation variability during November–April over southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric flow on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean meridional temperature gradient, resulting in temperature advection that is balanced by vertical motions over southwest Asia. The forcing of monthly southwest Asia precipitation by equivalent barotropic Rossby waves is different from the forcing by baroclinic Rossby waves associated with tropically forced–only modes of climate variability.

Current affiliation: Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Andrew Hoell, NOAA/Earth System Research Laboratory Physical Sciences Division, 325 Broadway R/PSD1, Boulder, CO 80304. E-mail: andrew.hoell@noaa.gov
Save