• Allan, R. P., , M. A. Ringer, , J. A. Pamment, , and A. Slingo, 2004: Simulation of the Earth’s radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40). J. Geophys. Res., 109, D18107, doi:10.1029/2004JD004816.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., , D. Dee, , K. Fielding, , M. Fuentes, , P. Kallberg, , S. Kobayashi, , and S. Uppala, 2009: The ERA-Interim Archive, version 1.0. ECMWF Tech Rep. ERA report series 1, 16 pp.

  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., , B. J. Hoskins, , and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, doi:10.1256/qj.01.211.

    • Search Google Scholar
    • Export Citation
  • Fujita, M., , A. Wada, , T. Iwabuchi, , and C. Rocken, 2012: GPS precipitable water vapor dataset for climate science. Proc. Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, Institute of Navigation, 34543458.

  • Hong, S., , and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, doi:10.1256/qj.05.204.

    • Search Google Scholar
    • Export Citation
  • Koseki, S., , and M. Watanabe, 2010: Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio Extension. J. Climate, 23, 24922507, doi:10.1175/2009JCLI2915.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , A. Kuwano-Yoshida, , N. Komori, , S.-P. Xie, , and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , M. Miyashita, , A. Kuwano-Yoshida, , H. Tokinaga, , and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, doi:10.1175/2010JCLI3359.1.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Peng, S., , W. A. Robinson, , and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987, doi:10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prata, A., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122, 11271151, doi:10.1002/qj.49712253306.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., , N. Rayner, , T. Smith, , D. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Wallace, J. M., , T. Mitchell, , and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., , A. Ohmura, , H. Gilgen, , and D. Rosenfeld, 2004: On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys. Res. Lett., 31, L11201, doi:10.1029/2003GL019188.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and et al. , 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Search Google Scholar
    • Export Citation
  • Xu, H., , H. Tokinaga, , and S.-P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate, 23, 47044715, doi:10.1175/2010JCLI3267.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , M. P. Hoerling, , J. Perlwitz, , D.-Z. Sun, , and D. Murray, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887, doi:10.1175/2011JCLI3944.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 10
PDF Downloads 43 43 10

An Oceanic Impact of the Kuroshio on Surface Air Temperature on the Pacific Coast of Japan in Summer: Regional H2O Greenhouse Gas Effect

View More View Less
  • 1 Tokyo Metropolitan University, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 2 Advanced Institute for Computational Science, RIKEN, Kobe, Japan
  • | 3 Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
  • | 4 Center for Environmental Science in Saitama, Kazo, Saitama, Japan
  • | 5 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
© Get Permissions
Restricted access

Abstract

This study used a 4-km resolution regional climate model to examine the sensitivity of surface air temperature on the Pacific coast of Japan to sea surface temperature (SST) south of the Pacific coast of Japan during summer. The authors performed a control simulation (CTL) driven by reanalysis and observational SST datasets. A series of sensitivity experiments using climatological values from the CTL SST datasets over a 31-yr period was conducted. The interannual variation in surface air temperature over the Pacific coast was well simulated in CTL. The interannual variation in SST over the Kuroshio region amplified the interannual variation in surface air temperature over the Pacific coast. It was found that 30% of the total variance of interannual variation in surface air temperature can be controlled by interannual variation in SST. The calculated surface air temperature on the Pacific coast increased by 0.4 K per 1-K SST warming in the Kuroshio region. Note that this sensitivity was considerably greater during nighttime than during daytime. Concurrent with the warming in surface air temperature, downward longwave radiation at the surface was also increased. In summer, the increase in latent heat flux was considerably larger than that in sensible heat flux over the ocean because of SST warming, according to the temperature dependence of the Bowen ratio. This implies that the primary factor for the increase in surface air temperature in summer is increased moisture in the lower troposphere, indicating that the regional warming was caused by an increase in H2O greenhouse gas.

Denotes Open Access content.

Corresponding author address: Hiroshi G. Takahashi, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan. E-mail: hiroshi3@tmu.ac.jp

Abstract

This study used a 4-km resolution regional climate model to examine the sensitivity of surface air temperature on the Pacific coast of Japan to sea surface temperature (SST) south of the Pacific coast of Japan during summer. The authors performed a control simulation (CTL) driven by reanalysis and observational SST datasets. A series of sensitivity experiments using climatological values from the CTL SST datasets over a 31-yr period was conducted. The interannual variation in surface air temperature over the Pacific coast was well simulated in CTL. The interannual variation in SST over the Kuroshio region amplified the interannual variation in surface air temperature over the Pacific coast. It was found that 30% of the total variance of interannual variation in surface air temperature can be controlled by interannual variation in SST. The calculated surface air temperature on the Pacific coast increased by 0.4 K per 1-K SST warming in the Kuroshio region. Note that this sensitivity was considerably greater during nighttime than during daytime. Concurrent with the warming in surface air temperature, downward longwave radiation at the surface was also increased. In summer, the increase in latent heat flux was considerably larger than that in sensible heat flux over the ocean because of SST warming, according to the temperature dependence of the Bowen ratio. This implies that the primary factor for the increase in surface air temperature in summer is increased moisture in the lower troposphere, indicating that the regional warming was caused by an increase in H2O greenhouse gas.

Denotes Open Access content.

Corresponding author address: Hiroshi G. Takahashi, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan. E-mail: hiroshi3@tmu.ac.jp
Save