• Bellenger, H., , E. Guilyardi, , J. Leloup, , M. Lengaigne, , and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Y. Zhang, , and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, L. X., , M. Dong, , and Y. N. Shao, 1992: The characteristics of interannual variations on the East Asian monsoon. J. Meteor. Soc. Japan, 70, 397421.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , S. P. Xie, , H. Tokinaga, , Y. Okumura, , H. Kubota, , N. Johnson, , and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo–western Pacific for 1870–2007. J. Climate, 25, 17221744, doi:10.1175/JCLI-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , J. C. Fyfe, , S.-P. Xie, , and X. Dai, 2015: Decadal modulation of global-mean temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Phillips, , and J. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and A. Dai, 2015: The influence of the inter-decadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., doi:10.1007/s00382-015-2500-x, in press.

    • Search Google Scholar
    • Export Citation
  • Dong, L., , T. Zhou, , and X. Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, 85708577, doi:10.1002/2014GL062269.

    • Search Google Scholar
    • Export Citation
  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, J., , L. Wang, , and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, doi:10.1175/JCLI-D-13-00015.1.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , J. A. Renwick, , M. J. Salinger, , and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hu, K., , G. Huang, , X. Zheng, , S. Xie, , X. Qu, , Y. Du, , and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, doi:10.1175/JCLI-D-13-00268.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G., , K. Hu, , and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, doi:10.1175/2010JCLI3577.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, A. D., , L. V. Alexander, , and M. G. Donat, 2013: Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett., 40, 22712277, doi:10.1002/grl.50427.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., 1995: Field intercomparison. An Analysis of Climate Variability Applications of Statistical Techniques, H. von Storch and A. Navara, Eds., Springer-Verlag, 159–175.

  • Mantua, N., , S. Hare, , Y. Zhang, , J. Wallace, , and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Metz, W., 1991: Optimal relationship of large-scale flow patterns and the barotropic feedback due to high-frequency eddies. J. Atmos. Sci., 48, 11411159, doi:10.1175/1520-0469(1991)048<1141:OROLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Qian, C., , and T. Zhou, 2014: Multidecadal variability of north China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 12101222, doi:10.1175/JCLI-D-13-00235.1.

    • Search Google Scholar
    • Export Citation
  • Shen, S., , and K.-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105124.

    • Search Google Scholar
    • Export Citation
  • Smith, T., , R. Reynolds, , T. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., , and T. Zhou, 2012: Reliability of the 20CR reanalysis data in measuring the East Asian summer monsoon variability (in Chinese). Chin. J. Atmos. Sci., 36, 12071222.

    • Search Google Scholar
    • Export Citation
  • Song, F., , and T. Zhou, 2014a: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, doi:10.1175/JCLI-D-13-00248.1.

    • Search Google Scholar
    • Export Citation
  • Song, F., , and T. Zhou, 2014b: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, doi:10.1175/JCLI-D-14-00396.1.

    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., , M. E. Mann, , and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, doi:10.1126/science.1257856.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variability. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Z. Wu, , J. Li, , J. Liu, , C. P. Chang, , Y. Ding, , and G. Wu, 2008a: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 44494463, doi:10.1175/2008JCLI2183.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J. Yang, , T. Zhou, , and B. Wang, 2008b: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, doi:10.1175/2007JCLI1981.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , Y. Feng, , G. P. Compo, , V. R. Swail, , F. W. Zwiers, , R. J. Allan, , and P. D. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of Twentieth Century Reanalysis. Climate Dyn., 40, 27752800, doi:10.1007/s00382-012-1450-9.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , T. Zhou, , and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, doi:10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , T. Li, , and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, doi:10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Y. Du, , G. Huang, , X. T. Zheng, , H. Tokinaga, , K. Hu, , and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, doi:10.1175/2010JCLI3429.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J. L., , Q. Y. Liu, , S. P. Xie, , Z. Y. Liu, , and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , A. Sumi, , and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, doi:10.1007/BF02973084.

    • Search Google Scholar
    • Export Citation
  • Zheng, X. T., , S. P. Xie, , and Q. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 61466164, doi:10.1175/2011JCLI4169.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., , F. Song, , R. Lin, , X. Chen, , and X. Chen, 2013: The 2012 North China floods: Explaining an extreme rainfall event in the context of a longer-term drying tendency [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94 (9), S49S51.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., , S. Ma, , and L. Zou, 2014: Understanding a hot summer in central eastern China: Summer 2013 in context of multi-model trend analysis [in “Explaining Extreme Events of 2013 from a Climate Perspective]. Bull. Amer. Meteor. Soc., 95 (9), S54S57.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 26
PDF Downloads 103 103 37

The Crucial Role of Internal Variability in Modulating the Decadal Variation of the East Asian Summer Monsoon–ENSO Relationship during the Twentieth Century

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

This study investigates the role of internal variability in modulating the East Asian summer monsoon (EASM)–ENSO relationship using Twentieth-Century Reanalysis (20CR) data and simulations from phase 5 of CMIP (CMIP5). Analysis of 20CR data reveals an unstable EASM–ENSO relationship during the twentieth century. During the high-correlation periods of 1892–1912 and 1979–99, an evident western Pacific anticyclone (WPAC) and dipole sea level pressure (SLP) pattern are present in the decaying El Niño summer, accompanied by Indian Ocean warming and a tropospheric temperature Matsuno–Gill pattern. However, these are weaker or absent during low-correlation periods (1914–34 and 1958–78). After removing the external forcings based on historical simulations from 15 CMIP5 models, all the above features remain almost unchanged, suggesting the crucial role of internal variability. In a 501-yr preindustrial control (piControl) simulation without external forcing variation from CCSM4, the EASM–ENSO relationship also shows significant decadal variation, with a magnitude comparable to the 20CR data. The analysis demonstrates that the EASM–ENSO relationship’s variation is modulated by the interdecadal Pacific oscillation (IPO). Compared to negative IPO phases, the warmer East China Sea in positive IPO phases weakens the western North Pacific subtropical high (WNPSH), inducing more precipitation. Thus, the Kelvin wave–induced interannual divergence suppresses more mean-state precipitation and leads to a stronger WPAC. Hence, the IPO modulates the EASM–ENSO relationship through the WNPSH, which is evident in both 20CR and the piControl simulation.

Corresponding author address: Tianjun Zhou, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: zhoutj@lasg.iap.ac.cn

Abstract

This study investigates the role of internal variability in modulating the East Asian summer monsoon (EASM)–ENSO relationship using Twentieth-Century Reanalysis (20CR) data and simulations from phase 5 of CMIP (CMIP5). Analysis of 20CR data reveals an unstable EASM–ENSO relationship during the twentieth century. During the high-correlation periods of 1892–1912 and 1979–99, an evident western Pacific anticyclone (WPAC) and dipole sea level pressure (SLP) pattern are present in the decaying El Niño summer, accompanied by Indian Ocean warming and a tropospheric temperature Matsuno–Gill pattern. However, these are weaker or absent during low-correlation periods (1914–34 and 1958–78). After removing the external forcings based on historical simulations from 15 CMIP5 models, all the above features remain almost unchanged, suggesting the crucial role of internal variability. In a 501-yr preindustrial control (piControl) simulation without external forcing variation from CCSM4, the EASM–ENSO relationship also shows significant decadal variation, with a magnitude comparable to the 20CR data. The analysis demonstrates that the EASM–ENSO relationship’s variation is modulated by the interdecadal Pacific oscillation (IPO). Compared to negative IPO phases, the warmer East China Sea in positive IPO phases weakens the western North Pacific subtropical high (WNPSH), inducing more precipitation. Thus, the Kelvin wave–induced interannual divergence suppresses more mean-state precipitation and leads to a stronger WPAC. Hence, the IPO modulates the EASM–ENSO relationship through the WNPSH, which is evident in both 20CR and the piControl simulation.

Corresponding author address: Tianjun Zhou, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: zhoutj@lasg.iap.ac.cn
Save