• Adams, A. M., , J. M. Prospero, , and C. Zhang, 2012: CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Climate, 25, 68626879, doi:10.1175/JCLI-D-11-00672.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and et al. , 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Balkanski, Y., , M. Schulz, , T. Claquin, , and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys., 7, 8195, doi:10.5194/acp-7-81-2007.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter07_FINAL.pdf.]

  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, doi:10.1175/2009MWR3135.1.

    • Search Google Scholar
    • Export Citation
  • Cakmur, R. V., and et al. , 2006: Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J. Geophys. Res.,111, D06207, doi:10.1029/2005JD005791.

  • Chou, C., , and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, doi:10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Claquin, T., , M. Schulz, , and Y. J. Balkanski, 1999: Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res., 104, 22 24322 256, doi:10.1029/1999JD900416.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., , and R. D. Cess, 1985: Response of the NCAR Community Climate Model to the radiative forcing by the naturally occurring tropospheric aerosol. J. Atmos. Sci., 42, 16771692, doi:10.1175/1520-0469(1985)042<1677:ROTNCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , R. L. Miller, , and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 49975001, doi:10.1073/pnas.0810200106.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., , and E. K. Vizy, 2006: Coupled model simulations of the West African monsoon system: Twentieth- and twenty-first-century simulations. J. Climate, 19, 36813703, doi:10.1175/JCLI3814.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., , K. Sassen, , M. R. Poellot, , D. Baumgardner, , D. C. Rogers, , S. D. Brooks, , A. J. Prenni, , and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett.,30, 1732, doi:10.1029/2003GL017410.

  • Dunion, J. P., , and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, doi:10.1175/BAMS-85-3-353.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , G. R. Foltz, , and D. Zhang, 2012: Physical response of the tropical–subtropical North Atlantic Ocean to decadal–multidecadal forcing by African dust. J. Climate, 25, 58175829, doi:10.1175/JCLI-D-11-00438.1.

    • Search Google Scholar
    • Export Citation
  • Gillette, D. A., , J. Adams, , A. Endo, , D. Smith, , and R. Kihl, 1980: Threshold velocities for input of soil particles into the air by desert soils. J. Geophys. Res., 85, 56215630, doi:10.1029/JC085iC10p05621.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., , M. Chin, , I. Tegen, , J. M. Prospero, , B. Holben, , O. Dubovik, , and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, doi:10.1029/2000JD000053.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., , L. W. Horowitz, , V. Ramaswamy, , I. V. Geogdzhayev, , B. N. Holben, , G. Stenchikov, , and X. Tie, 2006: Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. J. Geophys. Res.,111, D22210, doi:10.1029/2005JD006707.

  • Ginoux, P., , J. M. Prospero, , T. E. Gill, , N. C. Hsu, , and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys.,50, RG3005, doi:10.1029/2012RG000388.

  • Gnanadesikan, A., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , M. J. Harrison, , R. C. Pacanowski, , and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp. [Available online at http://gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.]

  • Griffies, S. M., and et al. , 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Grousset, F. E., , P. Ginoux, , A. Bory, , and P. E. Biscaye, 2003: Case study of a Chinese dust plume reaching the French Alps. Geophys. Res. Lett.,30, 1277, doi:10.1029/2002GL016833.

  • Gu, Y., , K. N. Liou, , J. H. Jiang, , H. Su, , and X. Liu, 2012: Dust aerosol impact on North Africa climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 16671679, doi:10.5194/acp-12-1667-2012.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., 2006: Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. J. Geophys. Res.,111, DD22211, doi:10.1029/2005JD006937.

  • Horowitz, L. W., and et al. , 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res.,108, 4784, doi:10.1029/2002JD002853.

  • Huneeus, N., and et al. , 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, doi:10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jickells, T. D., and et al. , 2005: Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 6771, doi:10.1126/science.1105959.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , K. M. Kim, , Y. C. Sud, , and G. K. Walker, 2009: A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann. Geophys., 27, 40234037, doi:10.5194/angeo-27-4023-2009.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., , E. Ganor, , and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523, doi:10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , D. L. Mauzerall, , and L. W. Horowitz, 2009: Evaluating inter-continental transport of fine aerosols: (2) Global health impact. Atmos. Environ., 43, 43394347, doi:10.1016/j.atmosenv.2009.05.032.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., , K. J. Evans, , J. E. Truesdale, , J. J. Hack, , and J.-F. Lamarque, 2012: Interannual tropospheric aerosol variability in the late twentieth century and its impact on tropical Atlantic and West African climate by direct and semidirect effects. J. Climate, 25, 80318055, doi:10.1175/JCLI-D-12-00029.1.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., and et al. , 2010: Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmos. Chem. Phys., 10, 10 87510 893, doi:10.5194/acp-10-10875-2010.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 2012: Adjustment to radiative forcing in a simple coupled ocean–atmosphere model. J. Climate, 25, 78027821, doi:10.1175/JCLI-D-11-00119.1.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., , and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 32473267, doi:10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., , I. Tegen, , and J. Perlwitz, 2004: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res.,109, D04203, doi:10.1029/2003JD004085.

  • Miller, R. L., , P. Knippertz, , C. P. García-Pando, , J. P. Perlwitz, , and I. Tegen, 2014: Impact of dust radiative forcing upon climate. Mineral Dust: A Key Player in the Earth System, P. Knippertz and J.-B. W. Stuut, Eds., Springer, 327–357, doi:10.1007/978-94-017-8978-3_13.

  • Milly, P. C. D., , and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299, doi:10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patterson, E. M., , D. A. Gillette, , and B. H. Stockton, 1977: Complex index of refraction between 300 and 700 nm for Saharan aerosols. J. Geophys. Res., 82, 31533160, doi:10.1029/JC082i021p03153.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., , and P. J. Lamb, 2003: African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 10241027, doi:10.1126/science.1089915.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., , P. Ginoux, , O. Torres, , S. E. Nicholson, , and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys.,40, 1002, doi:10.1029/2000RG000095.

  • Sinyuk, A., , O. Torres, , and O. Dubovik, 2003: Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophys. Res. Lett.,30, 1081, doi:10.1029/2002GL016189.

  • Sokolik, I. N., , and O. B. Toon, 1999: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104, 94239444, doi:10.1029/1998JD200048.

    • Search Google Scholar
    • Export Citation
  • Solmon, F., , M. Mallet, , N. Elguindi, , F. Fiorfi, , A. Zakey, , and A. Konare, 2008: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett.,35, L24705, doi:10.1029/2008GL035900.

  • Solmon, F., , N. Elguindi, , and M. Mallet, 2012: Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Res., 52, 97113, doi:10.3354/cr01039.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19, 723740, doi:10.1175/JCLI3632.1.

    • Search Google Scholar
    • Export Citation
  • Swap, R., , M. Garstang, , S. Greco, , R. Talbot, , and P. Kållberg, 1992: Saharan dust in the Amazon basin. Tellus, 44B, 133149, doi:10.1034/j.1600-0889.1992.t01-1-00005.x.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., , M. Werner, , S. P. Harrison, , and K. E. Kohfeld, 2004: Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett.,31, L05105, doi:10.1029/2003GL019216.

  • Tie, X., and et al. , 2005: Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res.,110, D03204, doi:10.1029/2004JD005359.

  • Volz, F. E., 1973: Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash. Appl. Opt., 12, 564568, doi:10.1364/AO.12.000564.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , S. Dong, , A. T. Evan, , G. R. Foltz, , and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, doi:10.1175/JCLI-D-11-00413.1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Yoshioka, M., , N. M. Mahowald, , A. J. Conley, , W. D. Collins, , D. W. Fillmore, , C. S. Zender, , and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20, 14451467, doi:10.1175/JCLI4056.1.

    • Search Google Scholar
    • Export Citation
  • Yue, X., , H. Wang, , H. Liao, , and K. Fan, 2010: Direct climatic effect of dust aerosol in the NCAR Community Atmosphere Model version 3 (CAM3). Adv. Atmos. Sci., 27, 230242, doi:10.1007/s00376-009-8170-z.

    • Search Google Scholar
    • Export Citation
  • Yue, X., , H. Liao, , H. J. Wang, , S. L. Li, , and J. P. Tang, 2011: Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos. Chem. Phys., 11, 60496062, doi:10.5194/acp-11-6049-2011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 197 48
PDF Downloads 47 47 10

The Response of the Tropical Atlantic and West African Climate to Saharan Dust in a Fully Coupled GCM

View More View Less
  • 1 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

This study examines the climate response in West Africa and the tropical Atlantic to an idealized aerosol radiative forcing from Saharan mineral dust, comparable to the observed changes between the 1960s and 1990s, using simulations with the fully coupled GFDL Climate Model, version 2.1 (CM2.1), for two optical property regimes: more absorbing (ABS) and more scattering (SCT) dust. For both regimes dust induces significant regional reductions in radiative flux at the surface (approximately −30 W m−2). At the top of the atmosphere (TOA) dust in the two simulations produces a radiative flux anomaly of opposite sign (+30 W m−2 in the ABS case and −20 W m−2 in the SCT case). These differences result in opposing regional hydrologic and thermodynamic effects of dust. The ABS-forced simulations show an increase in the West African monsoon resulting from dust, whereas in the SCT-forced simulations dust causes a decrease in the monsoon. This is due to moist enthalpy changes throughout the atmospheric column over West Africa creating either horizontal divergence or convergence near the surface, respectively. In the tropical North Atlantic, dust acts to cool the ocean surface. However, in the subsurface the ABS-forced simulations show a decrease in upper-ocean heat content, while the SCT-forced simulations show an increase in upper-ocean heat content. The peak differences primarily arise from the wind stress curl response to a shift in the Atlantic ITCZ and associated mixed layer depth anomalies. Changes to upper-ocean currents are also found to be important in transporting energy across the equator.

Corresponding author address: Jeffrey D. O. Strong, Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ. E-mail: jdstrong@princeton.edu

Abstract

This study examines the climate response in West Africa and the tropical Atlantic to an idealized aerosol radiative forcing from Saharan mineral dust, comparable to the observed changes between the 1960s and 1990s, using simulations with the fully coupled GFDL Climate Model, version 2.1 (CM2.1), for two optical property regimes: more absorbing (ABS) and more scattering (SCT) dust. For both regimes dust induces significant regional reductions in radiative flux at the surface (approximately −30 W m−2). At the top of the atmosphere (TOA) dust in the two simulations produces a radiative flux anomaly of opposite sign (+30 W m−2 in the ABS case and −20 W m−2 in the SCT case). These differences result in opposing regional hydrologic and thermodynamic effects of dust. The ABS-forced simulations show an increase in the West African monsoon resulting from dust, whereas in the SCT-forced simulations dust causes a decrease in the monsoon. This is due to moist enthalpy changes throughout the atmospheric column over West Africa creating either horizontal divergence or convergence near the surface, respectively. In the tropical North Atlantic, dust acts to cool the ocean surface. However, in the subsurface the ABS-forced simulations show a decrease in upper-ocean heat content, while the SCT-forced simulations show an increase in upper-ocean heat content. The peak differences primarily arise from the wind stress curl response to a shift in the Atlantic ITCZ and associated mixed layer depth anomalies. Changes to upper-ocean currents are also found to be important in transporting energy across the equator.

Corresponding author address: Jeffrey D. O. Strong, Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ. E-mail: jdstrong@princeton.edu
Save